

Overview and principles of meat inspection and hygiene legislation

Sergio Ghidini

Contents

- History and origins of meat inspection
- Evolution of EU legislation on meat inspection
- Objectives of meat inspection for the future
 - Meat safety
 - Animal health
 - Animal welfare

Origins

- 'traditional' meat inspection procedures, developed in the mid 1880's to detect diseases such as trichinellosis, tuberculosis and taeniasis which were then endemic in Europe.
- Robert von Ostertag importance of zoonoses for man.
- tuberculosis from infected meat and brucellosis in humans from brucella-infected milk.
- pathological changes in tuberculous animals allowed meat inspectors to detect the condition with just eyes and knives

Ostertag (1899). The use of flesh and milk of tuberculous animals. The Journal of Comparative Pathology and Therapeutics, 12, 240-50.

Origins: in brief

- Hazard: Mycobacterium (bovis), Brucella spp., Taenia saginata/solium...
- Risk: human tb, human brucellosis, taeniasis
- Control point: slaughterhouse @ PMI
- Critical limit: detectable lesions (lymphnodes, lungs, muscles)

Origins

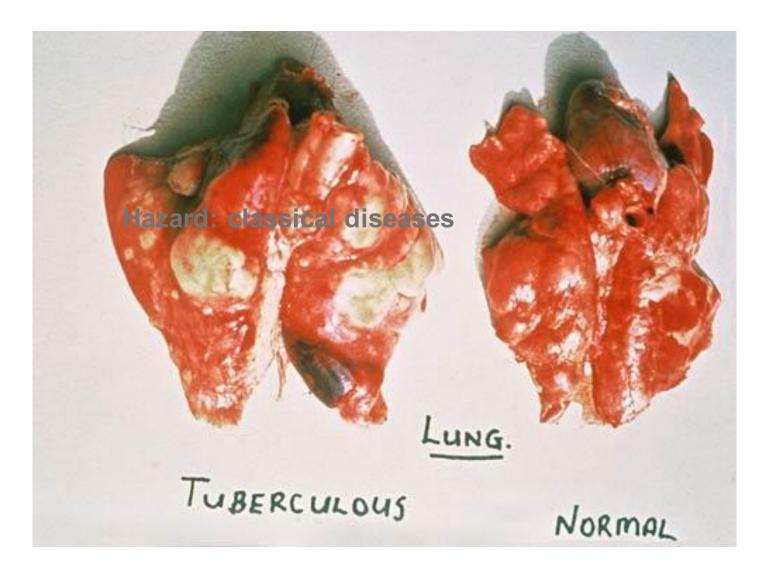
 Classical meat inspection was born RISK-BASED

But

hazards (and relative risks) changed

Early Legislation

- Council Directive 64/433/EEC of 26 June 1964 on health problems affecting intra-Community trade in fresh meat
- Council Directive 91/497/EEC of 29 July 1991 amending and consolidating Directive 64/433/EEC on health problems affecting intra-Community trade in fresh meat to extend it to the production and marketing of fresh meat


Early Legislation

 Early Eu legislation reflected meat inspection of the origin

Directives... Transposition in MS laws

http://www.teara.govt.nz/en/photograph/13927/possum-lungs

http://www.cresa.cat/blogs/sesc/cisticercosi-bovina/?lang=en

But

hazards to be covered by meat inspection (pigs):

- Salmonella spp.
- Yersinia enterocolitica,
- Toxoplasma gondii
- Trichinella

EFSA Panels on Biological Hazards (BIOHAZ), on Contaminants in the Food Chain (CONTAM), and on Animal Health and Welfare (AHAW); Scientific Opinion on the public health hazards to be covered by inspection of meat (swine). EFSA Journal 2011;9(10):2351. [198 pp.] doi:10.2903/j.efsa.2011.2351. Available online: www.efsa.europa.eu/efsajourna

Early Legislation

- PROs: easy to apply, easy to understand, very good operative tool for meat inspectors
- CONs: old hazards, cumbersome for meat inspectors, invasive operations (cross contamination), do not address "new" hazards

Later...

- REGULATION (EC) NO 854/2004 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption
- Commission Implementing Regulation (EU) 2019/627 of 15 March 2019 laying down uniform practical arrangements for the performance of official controls on products of animal origin intended for human consumption in accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council and amending Commission Regulation (EC) No 2074/2005 as regards official controls

Later...

- Still classical hazards to be covered (but in a risk-based way)
- No procedures and guidelines but evidencebased actions

The objectives of inspection

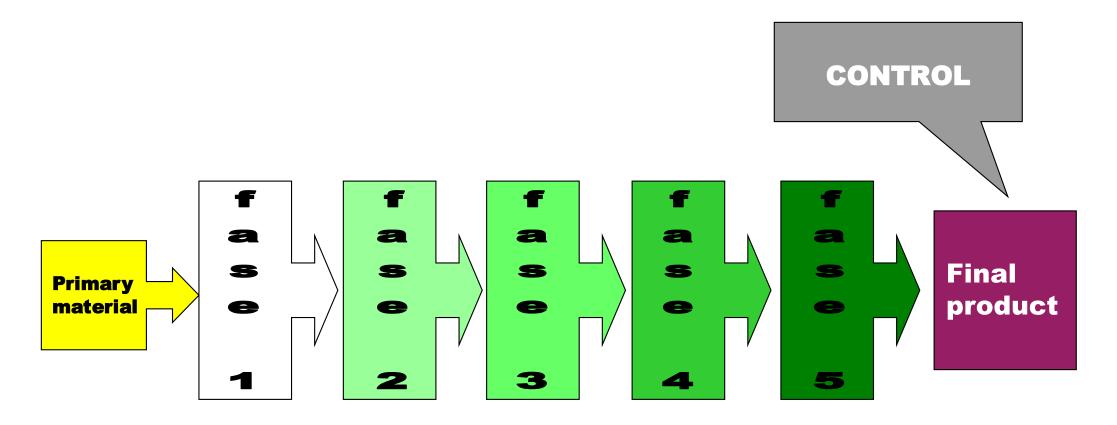
To ensure

- food safety,
- animal health
- and animal welfare

Meat safety

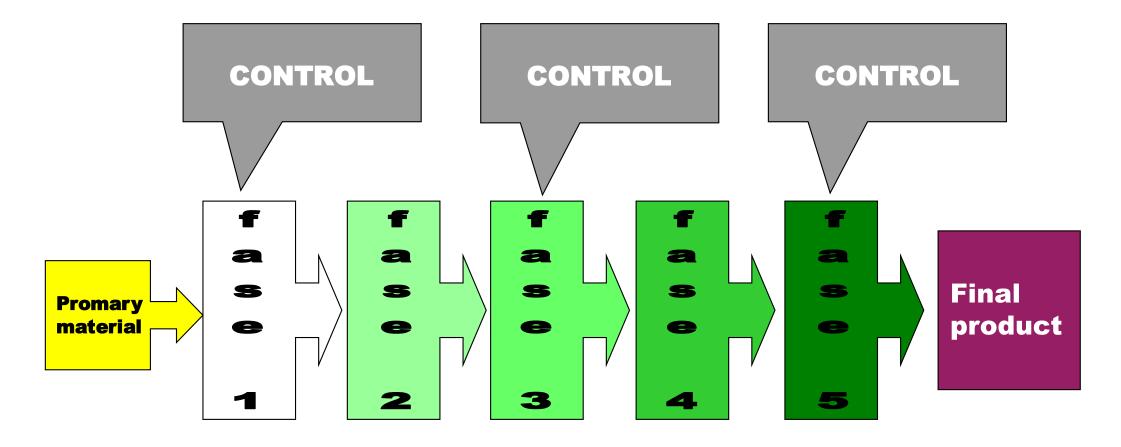
 The classical hazards can be controlled by eradication plans and farming techniques in the majority of cases

Meat safety


 Need of systems to cover "invisible" hazards (biological and chemical)

How?

 Remember directives 93/43 and 96/3 (on food production and SELFcontrol)...


Product control

- ✓ Only on final product
- ✓ Only sampling
- √ Follows problems

Process control

- **✓ On production procedures**
- ✓ In continuous
- ✓ Prevents problems

Meat Safety Assurance Systems (MSAS)

- Define hazard
- Use Harmonized Epidemiological Indicators
- Adoption of best practices

Meat Safety Assurance Systems (MSAS)

meat technology

Founder and publisher: Institute of Meat Hygiene and Technology, Belgrade

UDK: 637.52.05 ID: 27643145

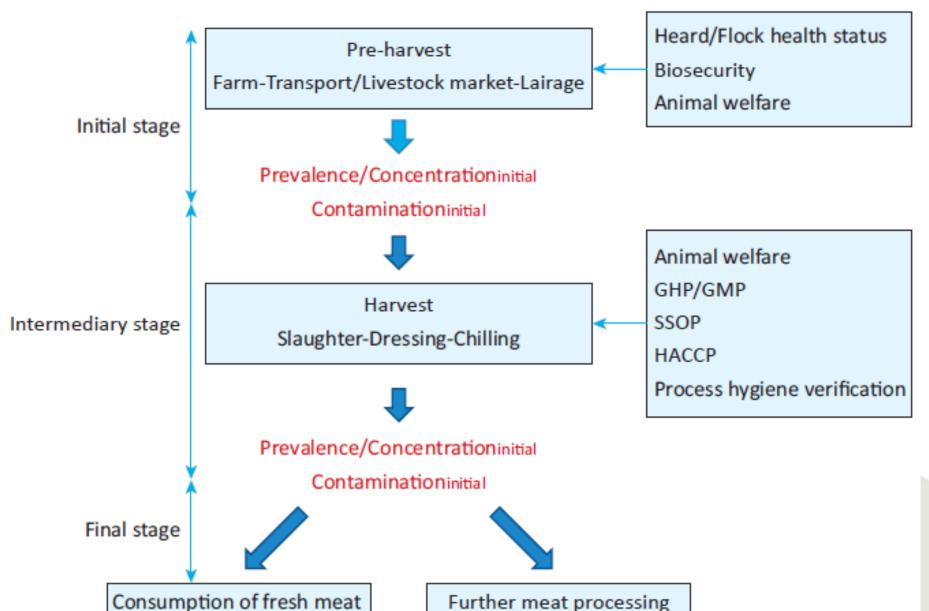
https://doi.org/10.18485/meattech.2020.61.2.1

Review Paper

Meat safety: Risk based assurance systems and novel technologies

Ivan Nastasijević^{1*}, Slavica Vesković¹, Milan Milijašević¹

Meat Safety Assurance Systems Hazards ranking


Ivan Nastasijević et al.

Meat safety: Risk based assurance systems and novel technologies

Table 2. Ranking of main biological and chemical hazards identified for each animal species (EFSA, 2011; 2012; 2013a; 2013b)

Species	Biological hazards				Chemical hazards
	High	Medium	Low	Undetermined	- Chemical hazards
Cattle	STEC Salmonella enterica	N/A**	Campylobacter spp. (thermophilic)	Toxoplasma gondii Trichinella spp.	Dioxins, dioxin-like polychlorinated biphenyls (DL-PCBs)
			Yersinia enterocolitica/ pseudotuberculosis		
			ESBL/AmpC E. coli		
			Cysticercus (Taenia saginata)		
			Mycobacterium bovis		
Sheep and goats		N/A diï	Campylobacter spp. (thermophilic)	Trichinella spp.	Dioxins, Dioxin-like polychlorinated biphenyls (DL-PCBs)
	STEC		Salmonella enterica		
	Toxoplasma gondii		Yersinia enterocolitica/ pseudotuberculosis		
			ESBL/AmpC E. coli		
Porcines	Salmonella enterica	Yersinia enterocolitica/ pseudotuberculosis Toxoplasma gondii Trichinella spp.	Campylobacter spp. (thermophilic)	N/A	Dioxins, Dioxin-like polychlorinated biphenyls (DL-PCBs)
			STEC		
			ESBL/AmpC E. coli		
			Cysticercus (Taenia solium)		
			Mycobacterium avium (hominissuis)		

Meat Safety Assurance Systems Harmonized Epidemiological Indicators

Animal Health

Are we doing that?

Yes/no

Animal Health

 Detection of pathological tissues organs at slaughterhouse → YES

Potentially, slaughterhouse as an epidemiological observatory

 Unique classification of lesions/diseases and univocal guidelines for interpretation → NO

Animal Health

Moreover...

 Need to "measure" some lesions in order to evaluate farm interventions (prophilaxes/therapy) → SCORING

What have to be considered?

- Animal protection at slaughterhouse
- Assessment of animal welfare in farms

- Animal protection at slaughterhouse
- Unloading
- Lairage
- Stunning
- Responsibility of FBO, but 625/2017, 627/19 the Official Veterinarian is always responsible of animal welfare

Council Regulation (EC) No 1099/2009 of 24 September 2009 on the protection of animals at the time of killing

- Assessment of animal welfare in farms is time and money consuming
- 1 vet → 2/3 farms per day
- <u>Demonstrated</u> association slaughterhouse ABMs/farm welfare

Review

Abattoir-Based Measures to Assess Swine Welfare: Analysis of the Methods Adopted in European Slaughterhouses

Silvio De Luca 1,*, Emanuela Zanardi 10, Giovanni Loris Alborali 2, Adriana Ianieri 1 and Sergio Ghidini 10

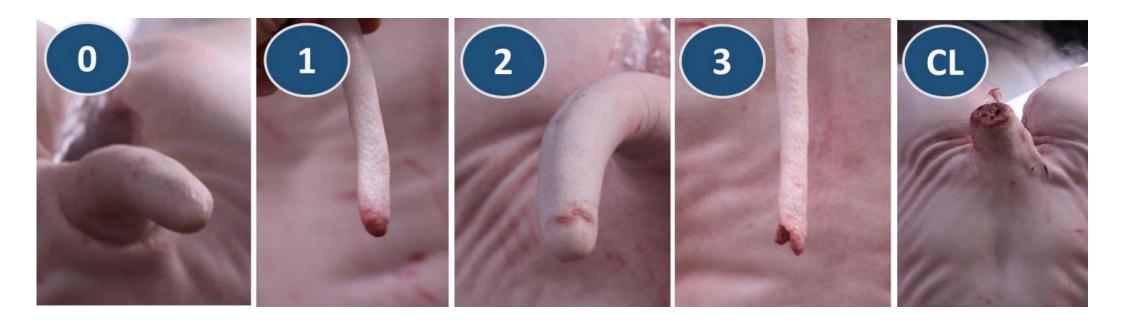
- Assessment of animal welfare at slaughterhouse
- ABMs indicators of animal welfare at farm level
 - skin lesions,
 - tail lesions,
 - ear lesions,
 - gastric lesions
- → SCORING

Skin lesions

Skin lesion scoring method for pigs.

Score	Description
0	No injuries
1	One small (approximately 2 cm) superficial lesion (not penetrating the skin)
2	More than one small, superficial lesion or just one red (deeper than score 1) but still superficial lesion
3	One or several big (2–5 cm) and deep (a lesion penetrating the skin) lesions. If deep; only one single lesion. If not so deep; several red lesions
4	One very big (> 5 cm), deep and red lesion or many deep, red lesions
5	Many very big, deep and red lesions covering the skin area

Livestock Science 214 (2018) 98-105


What can carcass-based assessments tell us about the lifetime welfare status of pigs?

Tail lesions

Gastric lesions

Conclusions

 New competences needed for meat inspectors (epidemiology, dbases interrogation, scoring...)

Thank You for the attention!

Sergio Ghidini

