

Risk-based meat inspection and integrated meat safety assurance

Examples of risk-based meat inspection in bovines – TB and cysticercosis

Lis Alban | 4-Feb-21 | Virtual training school

www.cost.eu

EU regulation 854/2004

Bovine carcasses > 6 weeks of age were to be inspected for *C. bovis*

- Incisions into masseter and pterygoid muscles and opening of heart
 - Time-consuming
 - Costly
 - Value in countries with low prevalence?
- Prevalence in DK estimated to 0.1 0.7% (1990)
 - In Denmark, cattle are typically lightly-infected
 - Up to 4 cysts per carcass
 - Low sensitivity (15%) of meat inspection of these animals

PhD project in Denmark 2010-13

Aim: to study how to make meat inspection more risk-based with respect to *C. bovis*

Part I: Identification of risk factors

Part II: Scenario tree modeling

PhD-Student: Francisco Calvo-Artavía

Inspection of spatial distribution

Case-control study

- Definition of case herd:
- At least one animal diagnose with C. bovis at meat inspect between 2006 and 2010
- 77 cases and 231 controls

Calvo-Artavia, Ph.D.-thesis

Results of case-control study

Risk factor	Risk group	RR	Proportion	AR
Gender	Female	4.7	0.5	1.7
	Male	1	0.5	0.3
Grazing	Grazing	3.6	0.4	1.8
	Not grazing	1	0.6	0.5
Access to risky water source	Access to risky water source	3.1	0.1	2.6
	No access to risky water source	1	0.9	0.8

Prevalence of cysticercosis in Danish cattle, divided according to age, 2004-2011

Source: Calvo-Artavia et al. Prev. Vet. Med. 2012

Results of simulation of future scenarios

Risk factor and scenarios	No. of detected cases (95% CI)	Sensitivity of surveillance (95% CI)	No. of cattle visually inspected	Net gain in million €/year (95% CI)
Current surveillance	44 (15, 95)	0.15 (0.07, 0.22)	0	0
Gender	36 (12, 78)	0.12 (0.06, 0.18)	251,327	0.7 (0.6, 0.8)
Grazing	31 (10, 67)	0.10 (0.05, 0.16)	299,374	0.8 (0.7, 0.9)
Access to risky water source	11 (4, 24)	0.04 (0.02, 0.06)	449,061	1.2 (1.1, 1.3)

Source: Calvo-Artavía et al., 2012

Discussion – similar findings in France

Apparent prevalence (%) of cattle with cysticercus according to sex, age and production type, based on post-mortem inspection N=4,564,065 cattle, France 2010

Age	Production type			
	Dairy	Mixed	Beef	
Female <8 months old	0[0;0.03]	0[0;0.02]	0.01 [0;0.01]	
Male <8 months old	0[0;0]	0[0;0.01]	0[0;0]	
Female 8-24 months old	0.25 [0.12;0.45]	0.1 [0.01;0.34]	0.06 [0.04;0.07]	
Male 8-24 months old	0.06 [0.04;0.07]	0.07 [0.05;0.097	0.04 [0.04;0.05]	
Female 2-3.5 years old	0.27 [0.24;0.31]	0.32 [0.27;0.39]	0.28 [0.26;0.30]	
Male 2-3.5 years old	0.33 [0.29;0.37]	0.49 [0.43;0.55]	0.3 [0.26;0.33]	
Female 3.5-5 years old	0.28 [0.25;0.31]	0.34 [0.29;0.39]	0.3 [0.28;0.33]	
Male 3.5-5 years old	0.32 [0.20;0.49]	0.51 [0.37;0.69]	0.33 [0.26;0.41]	
Female 5-10 years old	0.21 [0.20;0.23]	0.25 [0.23;0.28]	0.28 [0.26;0.30]	
Male 5-10 years old	0.84 [0.27;1.96]	0.54 [0.15;1.37]	0.15 [0.09;0.22]	
Female ≥10 years old	0.19 [0.15;0.24]	0.18 [0.14;0.24]	0.21 [0.19;0.23]	
Male ≥10 years old	0[0;33.63]	4.76 [0.12;23.82]	0.12 [0.02;0.34]	

Also similar findings in United Kingdom

Association between different combinations of age and gender on the odds of *C. bovis* infection, N=2270, United Kingdom 2013-2014

Age-Sex categories	Odds ratio (95% CI)	Wald's test P value
Males 0-20 months	1	(7 .)
Females 0-20 months	3.00 (1.87-4.84)	<0.001
Males 21-194 months	3.16 (2.24-4.46)	<0.001
Females 21-194 months	3.19 (2.29-4.45)	<0.001

Belgian data indicate a different situation

Jansen et al. (2018) estimated a prevalence of 43%

- One may wonder what causes this high prevalence
 - Sewage system? Usage of sewage as fertilizer? Grazing patterns?

With prevalences this high, all beef could be considered high-risk

Unless farmer decides to document low-risk

 Role of using serological test? – costly, if used on all slaughter cattle

Introduction to bovTB

Zoonotic infection

- Non-pasteurized milk is primary route of human exposure
- As well as direct contact to infected animals

Present in some European countries, eradicated in others

- OTF countries are officially free from bovTB
 - Important to document freedom and avoid reintroduction

EU Meat Inspection Regulation 854/2004

- Incisions into selected lymph nodes of all cattle
- But incisions increase probability of spreading Salmonella
- bovTB is **not** considered meat-borne
 - Food safety value of incisions at meat inspection being questioned

Effect of changing bovine meat inspection

Denmark officially free from bovTB (OTF) since 1980

• What is probability of maintaining freedom, if visual-only inspection is replacing traditional inspection?

Freedom model approach - developed by Tony Martin and Angus Cameron

Scenarios: current meat inspection or visual-only of all slaughtered cattle

Two steps

- Estimation of annual surveillance system sensitivity (SSe)
 probability of detecting at least one bovTB infected animal, if present
- 2. SSe and annual probability of introduction (*Pintro*) used to estimate probability of freedom (*PFree*) over time, based on negative predictive value (NPV)

Output of Disease Freedom Model based on Pfree approach

Next step: Pintro

Simulation model showed that probability of remaining free was high

- Even with visual-only inspection
- However, it was assumed that Pintro was 1%

Hence, to have confidence in conclusion, important to estimate country-specific *Pintro*

This can be done in import risk assessment

Results – Import risk assessment for M. bovis

Median probability of introduction into Danish cattle estimated to 0.7% in 1 year

- Risk mainly driven by imported cattle
 - Infectious immigrant workers played a negligible role

Risk related to cattle from OTF countries was higher than cattle from non-OTF countries

 Because of higher number of cattle imported from OTF-countries

Relative contribution of 3 sources of introduction of *M. bovis* to Danish cattle

Foddai et al., 2015

Discussion – bovTB free/non-free countries

EFSA's AHAW panel:

- Detection of bovTB would be more difficult, if palpation and incision of relevant organs were removed from inspection tasks
 - But the panel did not look specifically at countries, entirely free from bovTB

Free countries have safe trade patterns

- Thus, high biosecurity at national level
 - Reduces Pintro

High confidence in freedom from bovTB can be maintained

- Despite lower confidence in detection by visual-only inspection
 - Targeted inspection in bovine with higher risk (area-wise / herds importing)

EU Food Inspection Regulation 2019/627

New legislation for *C. bovis* and bovTB

- Compromise between Member States
- Differentiated approach
 - taking into account country status with respect to bovTB (OTF)
- New legislation will lead to lower costs related to sampling
 - Implementation in pipeline in many countries

Next steps

- Like in swine, focus is on lesions indicating prior septicaemia
- How can generalised disease stages be differentiated from local?
 - Microbiological testing in place in more countries
 - Methodology might need an updating

Contents lists available at ScienceDirect

International Journal of Food Microbiology

Assessing the value of bacteriological examination as a diagnostic tool in relation to meat inspection in cattle

Elvetia Kogka a,b , Marianne Halberg Larsen b , Maybritt Kiel Poulsen a , Jesper Valentin Petersen a , Camilla Thougaard Vester c , Lis Alban a,b,*

Lesions indicative of prior septicaemia

Ways of handling slaughtered bovines with such lesions

- Total condemnation
 - Often unnecessary
 - Will lead to food loss, economic loss, and higher carbon footprint
- Partial condemnation
 - How to detect all abscesses?
 - Make a study to identify locations
- De-boning
 - Is it needed?
 - Consider alternatives

Thank you for the attention. Please join us at RIBMINS

www.cost.eu

