

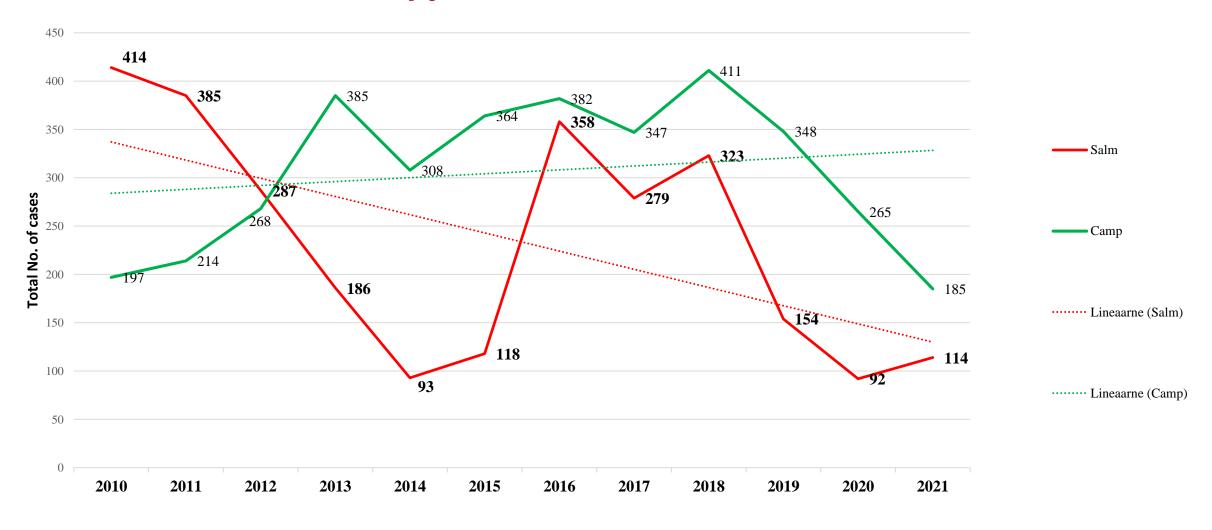
Salmonella enterica in the Estonian meat production chain 2016-2020

Estonian University of Life Sciences
Institute of Veterinary Medicine and Animal Sciences

Mati Roasto, DVM, MSc., PhD.

Department of the Veterinary Biomedicine and Food Hygiene

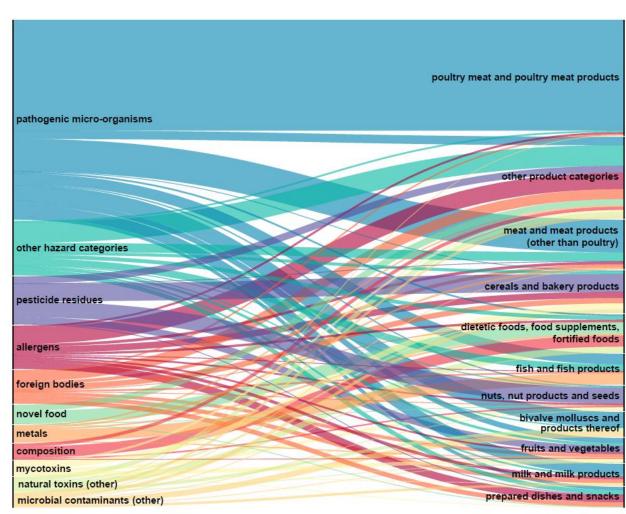
Salmonellosis


- Salmonellosis can be divided into four disease patterns:
 - gastroenteritis;
 - enteric fever;
 - bacteremia with or without extraintestinal infection;
 - the asymptomatic carrier state.
- Salmonella gastroenteritis usually follows the ingestion of contaminated food/water.
- Certain serotypes are associated with particular clinical syndromes e.g. S. Typhimurium and S. Enteritidis with gastroenteritis; S. Typhi and S. Paratyphi with typhoid or enteric fever.
- For general food safety applications, all salmonellae should be considered potentially pathogenic.

Five most common human zoonoses in EU, 2018-2020 Impact of the Covid-19 pandemic

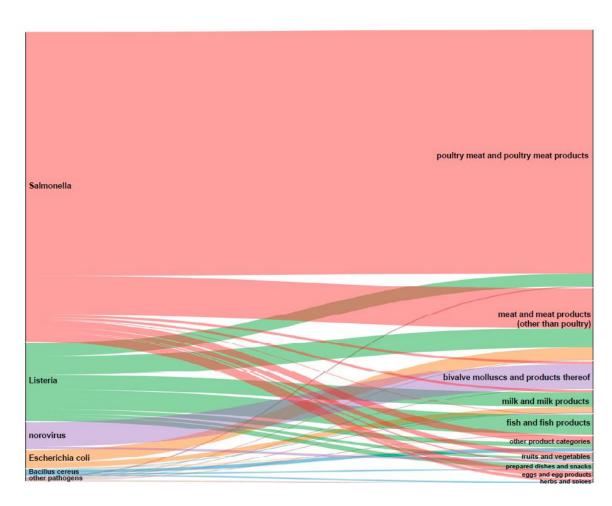
		Disease cases		Decrease %
Zoonoses	2018	2019	2020	
Campylobacteriosis	246,572	220,682	120,946	45.2
Salmonellosis	91,857	87,923	52,702	40.1
Yersiniosis	6,699	6,961	5,668	18.6
STEC infections	8,161	7,775	4,446	42.8
Listeriosis	2,549	2,621	1,876	28.4
Total	355,838	325,962	185,638	43.0

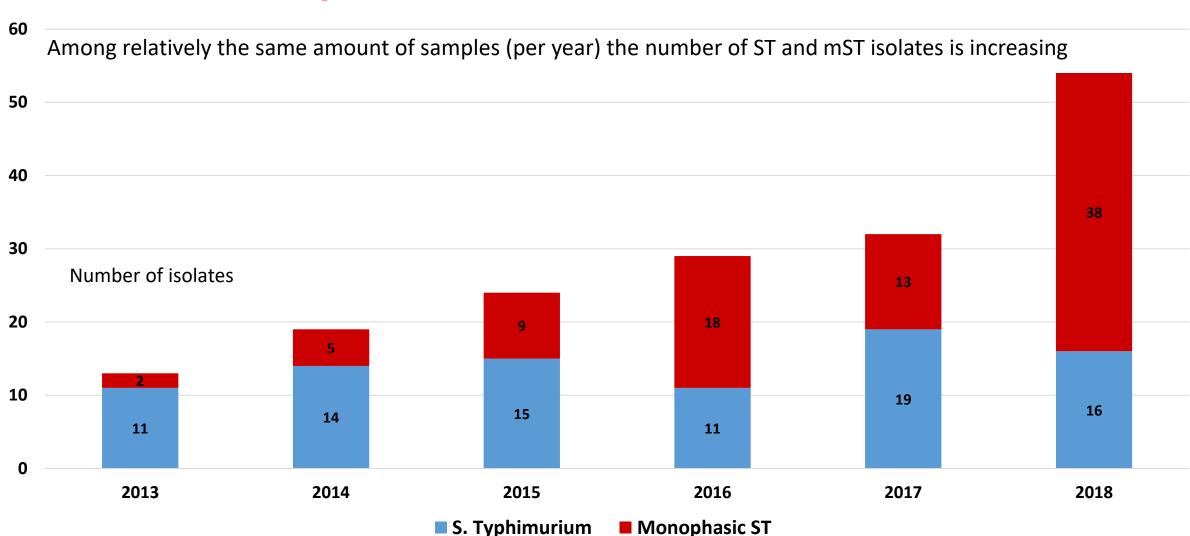
Salmonellosis and Campylobacter enteritis cases in Estonia in 2010-2021



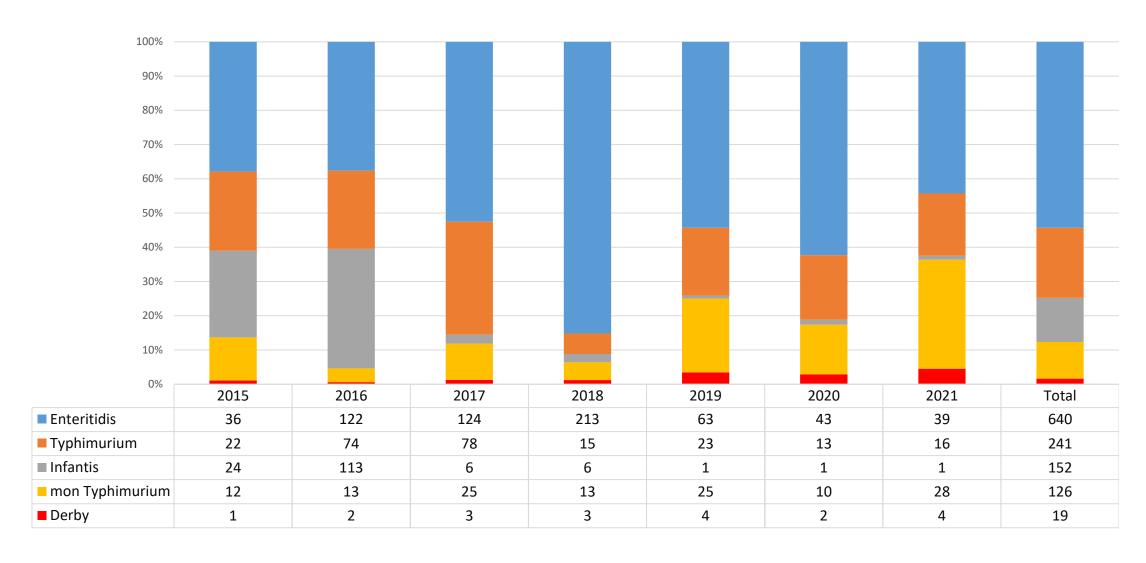
Two big *Salmonella* foodborne outbreaks in 2016: one with 88 cases of *S*. Infantis, another with 70 cases of *S*. Enteritidis In 2017, there was one outbreak with 17 cases (*S*. Typhimurium) and another with 12 cases (monophasic *S*. Typhimurium) In 2018, there was one outbreak with 82 cases (*S*. Enteritidis) and another major outbreak with 23 cases (*S*. Enteritidis)

RASFF Annual Report 2020


Pathogenic microorganisms in food of animal origin are of significant part of the RASFF notifications

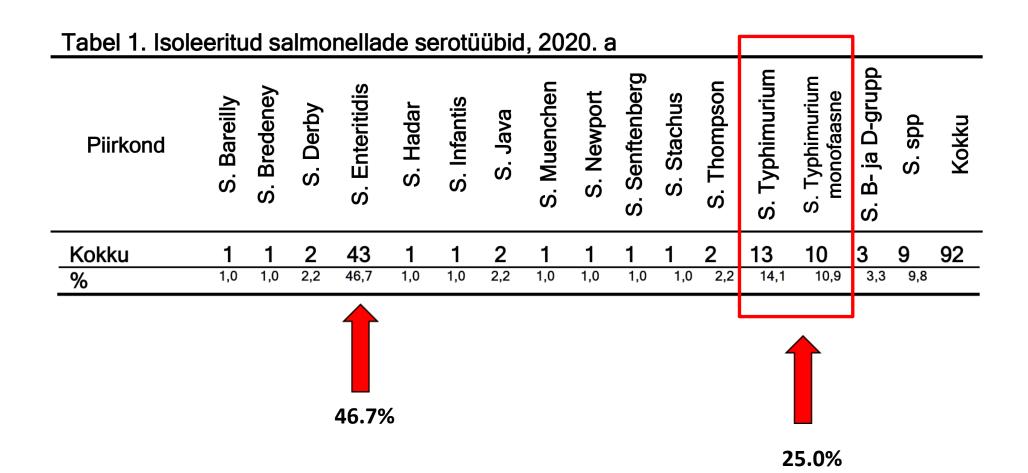


RASFF Annual Report 2020

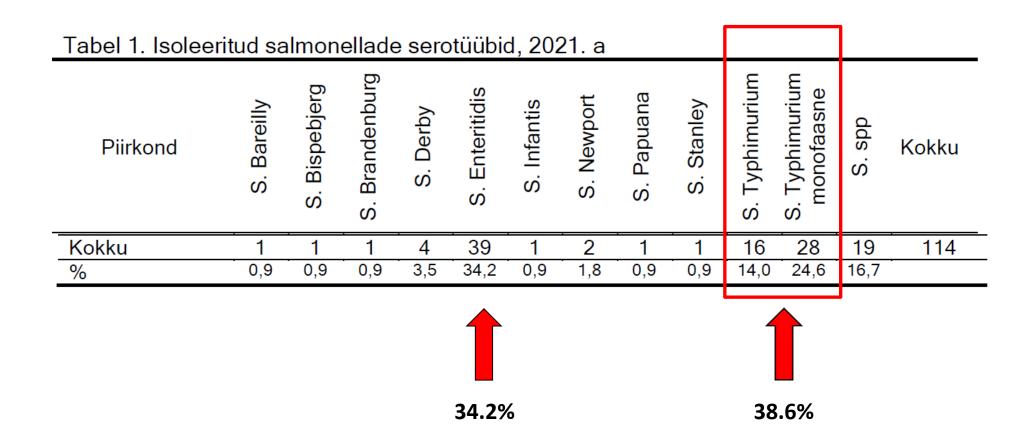

- Pathogenic microorganisms: 788 notifications in year 2020
 - **27.0% increase** compared to 2019 (n = 575 in 2019)
- *Salmonella* is more than ever the most frequently reported pathogen in food with **537 notifications**
 - 30.9% increase compared to 2019 (n = 371 in 2019);
 - mostly poultry meat and poultry meat products and S.
 Enteritidis as the most prevalent serotype.

Salmonella Typhimurium and its monophasic variant in meat production chain, 2013 – 2018, Estonia

Top 5 Salmonella serotypes among of human infections 2015-2021, Estonian Health Board


Salmonella serotypes isolated in Estonia in 2019 Human cases, Estonian Health Board

Serotüüp	S. Albany	S. Braenderup	S. Derby	S. Dublin	S. Enteritidis	S. Hvittingfoss	S. Infantis	S. Javiana	S. Leeuwarden	S. Litchfield	S. Muenchen	S. Muenster	S. Napoli	S. Oranienburg	S. Stanleyville	S. Typhimurium	S. Typhimurium monofaasne	S. Virchow	S. S-grupp	S. spp	Kliin+epid	Kokku
Haigete arv	1	1	4	2	63	1	1	2	1	1	2	1	1	2	2	23	25	2	1	14	4	154
%	0,6	0,6	2,6	1,3	40,1	0,6	0,6	1,3	0,6	0,6	1,3	0,6	0,6	1,3	1,3	14,9	16,2	1,3	0,6	9,1	2,6	



40.1% 31.1%

Salmonella serotypes isolated in Estonia in 2020 Human cases, Estonian Health Board

Salmonella serotypes isolated in Estonia in 2021 Human cases, Estonian Health Board

Salmonella prevalence at the farm level 2016-2020 in Estonia

Year		Pig	Cat	tle	Broiler	Chicken
	Studied herds a	Positive herds	Studied herds b	Positve herds	Studied flocks ^c	Positive flocks
		(%)		(%)		(%)
2016	17	1 (5.9)	144	2 (1.4)	732	0 (0.0)
2017	25	7 (28.0)	143	5 (3.5)	600	1 (0.2)
2018	22	6 (27.3)	89	3 (3.4)	596	0 (0.0)
2019	29	13 (44.8)	107	3 (2.8)	600	2 (0.3)
2020	26	6 (23.1)	100	6 (6.0)	659	0 (0.0)
Total	119	33 (27.7)	583	19 (3.3)	3187	3 (0.1)
		95% CI, 20.1-36.8		95% CI, 2.0-5.1		95%CI, 0.02-0.3

^a Herd level, fattening pigs; samples taken by the Veterinary and Food Board in the framework of the *Salmonella* monitoring programme of Estonia.

^b Samples taken by the Veterinary and Food Board in the framework of the *Salmonella* control programme of Estonia.

^c Samples taken by the Veterinary and Food Board and by the Food Business Operator.

Salmonella positive fattening pig farms in Estonia in 2015-2020

Most prevalent serotypes:

- *S.* Derby (n = 25; 62.5%);
- S. Typhimurium incl. m.ST (n = 6; 15%)

Year	Studied farms	No. of positive herds (%)	Related serotypes (No.)
2015	35	4 (11.4)	S. Enteritidis (1) S. Typhimurium (1)
		, ,	S. Lexington (1) S. Infatis (1)
2016	17	1 (5.9)	S. Derby (1) S. Mbandaka (1) - two serotypes detected in the same herd
2017	25	7 (28.0)	S. Cholerasuis (2) S. Derby (4) S. Agona (1) S. Dublin (1) - two serotypes detected in the same herd
2018	22	6 (27.3)	S. Derby (5) S. Agona (1)
2019	29	13 (44.8)	S. Derby (10) Monophasic S. Typhimurium (4) - two serotypes detected in the same herd
2020	26	6 (23.1)	S. Derby (5) S. Typhimurium (1)

Salmonella Control Program in Estonia, Example of pigs

Farm/holding level

- Sampling by veterinary officials. Samples analysed in Veterinary and Food Laboratory.
- Approximately 1/5 of the pig herds/holdings are examined **on a risk-based approach**.
- Pooled faecal samples are taken from fattening pigs kept in a group one pooled sample per 5-10 pigs.
- The number of samples depends on the size of the herd.
- The sampling scheme ensures the detection of the disease at 20% of prevalence with 95% confidence.
- Restrictions are applied when herd is declared as Salmonella-positive, but only when listed
 Salmonella serotypes are detected (important salmonellosis agents for pigs and regarding relevance
 to human health
 - Listed *Salmonella* serotypes for pigs: *S.* Enteritidis, *S.* Typhimurium and its monophasic variant, *S.* Derby, *S.* Hadar, *S.* Infantis, *S.* Virchow, *S.* Choleraesuis.

Abattoir level

 Carcases before chilling. The abrasive sponge method is used, and samples are taken from the most likely contaminated sites.

Meat cutting level

 At meat cutting level the samples of fresh pork or cuts of fresh pork from a processing line or other suitable place are taken.

• Salmonella control in feed and in animal by-products

Salmonella prevalence at the slaughterhouse level 2016-2020 in Estonia

Animal species		No. of positive sam	ples / total no. of sar	mples (positive %)		
	2016	2017	2018	2019	2020	Total
						95% CI
Pig	12/335	7/403	14/398	15/401	13/370	61/1,907 (3.2)
	(3.6)	(1.7)	(3.5)	(3.7)	(3.5%)	2.5-4.1
Cattle	0/211	1/209	0/215	1/214	0/212	2/1,061 (0.2)
	(0.0)	(0.5)	(0.0)	(0.5)	(0.0)	0.0-0.8
Broiler chicken	0/16	0/16	0/14	0/12	0/12	0/70 (0.0)
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	0.0-6.5
Quail	-	-	2/6	2/8	0/8	4/22 (18.2)
			(33.3)	(25.0)	(0.0)	6.0-41.0
Total	12/562 (2.1)	8/628 (1.3)	16/633 (2.5)	18/635 (2.8)	13/602 (2.2)	67/3,060 (2.2%)
						1.7-2.8

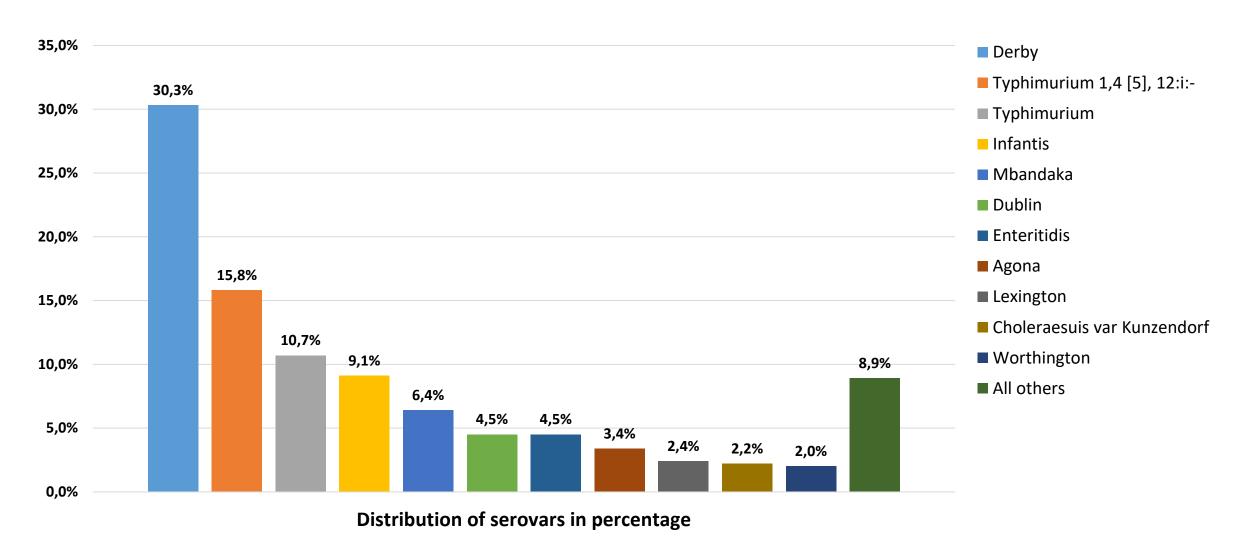
Samples taken within Estonian *Salmonella* Control Program Carcass surface samples of cattle, swine and sheep (abrasive sponge method) Poultry neck skin samples

Comparisons of proportions (%) of *Salmonella*-positive single samples from pig carcases before chilling, by sampler

		Comp	etent autho	orities (CA)			Food bus	siness opera	ator (FBOp)			
Country	Sample weight		N samples Positive	% samples positive	CI ₉₅	Sample weight	N samples Tested	N samples Positive	% samples positive	CI ₉₅	p-value (b)	Interpretation
Austria						400 cm ²	5,633	5	0.09	[0.03; 0.21]		
Belgium	600 cm ²	1,049	65	6.20	[4.81; 7.83]	600 cm ²	5,055	88	1.74	[1.40; 2.14]	< 0.001	CA > FBOp
Bulgaria	400 cm ²	2,094	0	0.00	[0.00; 0.18] ^(a)	400 cm ²	337	0	0.00	[0.00; 1.09] ^(a)	NS	
Cyprus	400 cm ²	6	0	0.00	_							
Denmark						400 cm ²	10,743	133	1.24	[1.04; 1.46]		
Estonia	400 cm ²	401	15	3.74	[2.11; 6.09]	400 cm ²	1,666	2	0.12	[0.01; 0.43]	< 0.001	CA > FBOp
France						400 cm ²	14,409	651	4.52	[4.18; 4.87]		
Germany						400 cm ²	27,269	148	0.54	[0.46; 6.37]		
Ireland	400 cm ²	383	16	4.18	[2.41; 6.70]							
Italy	400 cm ²	6,186	235	3.80	[3.34; 4.31]	400 cm ²	15,786	231	1.46	[1.28; 1.66]	< 0.001	CA > FBOp
Latvia						400 cm ²	606	0	0.00	[0.00; 0.61] ^(a)		
Malta	400 cm ²	60	5	8.33	[2.76; 18.38]	400 cm ²	125	3	2.40	[0.5; 6.85]	< 0.10	CA > FBOp
Netherlands	400 cm ²	383	22	5.74	[3.63; 8.57]						< 0.001	CA > FBOp
						1002	0.013	272	2.02	F3 F4. 3 401	1	

Salmonella prevalence at the meat cutting level 2016-2020 in Estonia

Animal species		No. of positive	samples / total	no. of sample	s (%)	
	2016	2017	2018	2019	2020	Total
						95% CI
Pig	4/250	1/252	3/272	4/276	2/240	14/1,290 (1.1)
	(1.6)	(0.4)	(1.1)	(1.5)	(0.8)	0.6-1.9
Cattle	0/106	0/102	1/112	1/120	0/116	2/556 (0.4)
	(0.0)	(0.0)	(0.9)	(0.8)	(0.0)	0.1-1.4
Broiler chicken	0/12	0/12	0/16	0/12	0/12	0/64 (0.0)
	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	0.0-1.7
Quail	-	-	-	2/8	0/8	2/16 (12.5)
				(25.0)	(0.0)	2.2-39.6
Total	4/368 (1.1)	1/366 (0.3)	4/400 (1.0)	7/416 (1.7)	2/376 (0.5)	18/1,926 (0.9%)
						0.6-1.5


Distribution of Salmonella serotypes (2016-2020, Estonia)

Salmonella serotype		Slaughterhouse			Meat cutting		In total (%)
	Pig	Cattle	Poultry	Pig	Cattle	Poultry	
Derby	48	0	0	7	0	0	55 (64.7)
							(CI 95%: 53.5-74.6)
Typhimurium 1,4 [5], 12:i:-	2	0	3*	1	0	2**	8 (9.4)
							(CI 95%: 4.4-18.2)
Typhimurium	3	0	1*	2	0	0	6 (7.0)
							(CI 95%: 2.9-15.3)
Infantis	2	0	0	1	0	0	3 (3.5)
Agona	3	0	0	0	0	0	3 (3.5)
Mbandaka	1	0	0	0	1	0	2 (2.4)
Dublin	0	1	0	0	1	0	2 (2.4)
Bredeney	2	0	0	0	0	0	2 (2.4)
Altona	0	1	0	0	0	0	1 (1.2)
Salmonella enterica subsp.	0	0	0	3	0	0	3 (3.5)
enterica (- ; f, g ; -)							
Total (%)	61 (71.7)	2 (2.4)	4 (4.7)	14 (16.4)	2 (2.4)	2 (2.4)	85 (100)

^{*}Quail

^{**}Quail meat

Serovar distribution of Salmonella enterica subsp. enterica isolates originated from meat production chain, Estonia (six-year period)

Salmonella serotypes in humans in Estonia, 2016-2020

		Numb	er of Disease	e Cases		Total	1
Salmonella Serotype	2016	2017	2018	2019	2020	– Tot	al
	(n)	(n)	(n)	(n)	(n)	(n)	(%)
Enteritidis	122	124	213	63	43	565	46.9
Typhimurium	74	78	15	23	13	203	16.8
Infantis	113	6	6	1	1	127	10.5
1,4[5],12:i:-	13	25	13	25	10	86	7.1
Derby	2	3	3	4	2	14	1.2
Java	0	1	4	0	2	7	0.6
Sandiego	0	0	3	0	0	3	0.3
Virchow	0	1	3	2	0	6	0.5
Thompson	3	0	1	0	2	6	0.5
Stanley	1	0	3	0	0	4	0.3
Mbandaka	1	3	0	0	0	4	0.3
Oranienburg	1	0	1	2	0	4	0.3
Coeln	0	2	2	0	0	4	0.3
S. C group	3	2	0	0	0	5	0.4
S. B and D groups	3	3	8	0	3	17	1.4
Salmonella spp.	9	17	24	14	9	73	6.1
All other rare serotypes	13	14	24	20	7	78	6.5
Total (%)	29.7 $(n = 358)$	23.1 (<i>n</i> = 279)	26.8 ($n = 323$)	12.8 $(n = 154)$	7.6 $(n = 92)$	100.0 $(n = 1206)$	100.0

Summary

- In 2016-2020, the prevalence of *Salmonella* at the Estonian farm/herd level was 27.7%, 3.3% and 0.1% for fattening pigs, cattle and poultry, respectively.
- The top three serotypes isolated at the slaughterhouse and meat cutting levels were S. Derby, monophasic S. Typhimurium and S. Typhimurium.
- S. Enteritidis is the main cause (46.9%) of human salmonellosis cases in Estonia, but in recent years, Enteritidis has not been detected at the slaughterhouse or meat cutting level.
- **Conclusion:** In recent years, monophasic *S.* **Typhimurium** has become epidemiologically more important in Estonia, with the second-highest cause in human cases and third-highest among the most prevalent serotypes of *Salmonella enterica* in the Estonian meat chain.
- Taking into account the high prevalence of *Salmonella*, more attention needs to be paid to the fattening pig farm level in Estonia including educational programs for farmers and verification of the efficiency of the *Salmonella* control measures.

Article

Prevalence and Serotype Diversity of *Salmonella enterica* in the Estonian Meat Production Chain in 2016–2020

Kaisa Kuus ¹, Toomas Kramarenko ², Jelena Sõgel ³, Mihkel Mäesaar ¹, Maria Fredriksson-Ahomaa ⁴

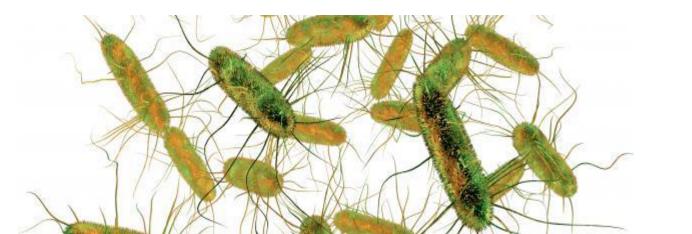
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 56-3, 51006 Tartu, Estonia; kaisa.kuus@student.emu.ee (K.K.); mihkel.maesaar@emu.ee (M.M.)
- Veterinary and Food Laboratory, Fr. R. Kreutzwaldi 30, 51006 Tartu, Estonia; toomas.kramarenko@vetlab.ee
- Agriculture and Food Board, Väike-Paala 3, 11415 Tallinn, Estonia; jelena.sogel@pta.agri.ee
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, P.O. Box 66, 00014 Helsinki, Finland; maria.fredriksson-ahomaa@helsinki.fi
- * Correspondence: mati.roasto@emu.ee; Tel.: +372-731-3433

Abstract: Background: *Salmonella enterica* represents a considerable public concern worldwide, with farm animals often recognised as an important reservoir. This study gives an overview of the prevalence and serotype diversity of *Salmonella* over a 5-year period in the meat production chain in Estonia. Data on human salmonellosis over the same period are provided. Methods: *Salmonella* surveillance data from 2016 to 2020 were analysed. Results: The prevalence of *Salmonella* at the farm level was 27.7%, 3.3% and 0.1% for fattening pigs, cattle and poultry, respectively. *S. Derby* was the most prevalent serotype at the farm level for fattening pigs and *S. Dublin* for cattle. The top three serotypes isolated at the slaughterhouse and meat cutting levels were *S. Derby*, monophasic *S. Typhimurium* and *S. Typhimurium* with proportions of 64.7%, 9.4% and 7.0%, respectively. These serotypes were the top five most common *Salmonella* serotypes responsible for human infections in Estonia. *S. Enteritidis* is the main cause (46.9%) of human salmonellosis cases in Estonia, but in recent years, Enteritidis has not been detected at the slaughterhouse or meat cutting level. Conclusion: In recent years, monophasic *S. Typhimurium* has become epidemiologically more important in Estonia, with the second-highest cause in human cases and third-highest among the most prevalent serotypes of *Salmonella enterica* in the meat chain.

Citation: Kuus, K.; Kramarenko, T.; Sõgel, J.; Mäesaar, M.; Fredriksson-Ahomaa, M.; Roasto, M. Prevalence and Serotype Diversity of Salmonella enterica in the Estonian Meat Production Chain in 2016–2020. Pathogens 2021, 10, 1622. https:// doi.org/10.3390/pathogens10121622

Thank you!

Estonian University of Life Sciences


Agricultural and Food Board of Estonia

Health Board of Estonia

Veterinary and Food Laboratory of Estonia

