

Systematic literature review on pre-harvest food safety interventions for pigs

Maria Rodrigues da Costa

WG2 Overview

21-Jun-2022

Conclusions

WG2 Background

RIBMINS main goal "MEAT SAFETY"

Stakeholder cooperation along the food chain

"Prevention is better than cure"

Interventions on-farm to control foodborne zoonoses

Systematic reviews: assess effectiveness of interventions

Methods

Identify key pathogens

EFSA Journal 2012;10(6):2741

EFSA Journal 2011;9(10):2351

SCIENTIFIC OPINION

Scientific Opinion on the public health hazards to be covered by inspection of meat (poultry)¹

SCIENTIFIC OPINION

Scientific Opinion on the public health hazards to be covered by inspection of meat (swine)¹

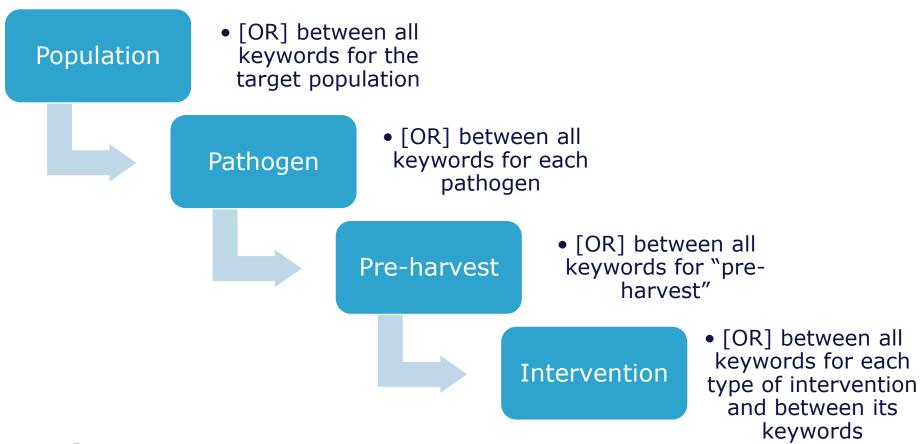
EFSA Journal 2013;11(6):3266

SCIENTIFIC OPINION

Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals)¹

WG2 Methods

- Systematic review PRISMA
 - Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement
- Searches were conducted on PubMed® & Web of Science on June 7th 2020
 - Peer-reviewed studies in English
 - Time restrictions: published between 2015 and 2020 (until June 7th)


Effectiveness of pre-harvest meat safety interventions to control foodborne pathogens

WG2 Methods

21-Jun-2022

Search string structure used for the searches conducted

WG2 Methods

Eligibility criteria - PICO

PICO	Inclusion Criteria	Exclusion Criteria		
	Animal species being evaluated: must include (but not limited to) pigs	Does not include actual or theoretical <pathogen> infection/contamination in pigs</pathogen>		
Population	Unit of study [animal, herd, house, barn, farm] and [surfaces, food, water, environment, drinkers, feeder, other animals]	Others		
T	Interventions to control/reduce/eradicate <pathogen> in pigs</pathogen>	Studies not mentioning control/reduce/eradicate interventions for < pathogen> in pigs		
Intervention	Interventions on-farm or during transport (pre- harvest)	Interventions on lairage, at slaughter and post- harvest		
	Field/experimental studies	Lab/bench studies		
Comparison	Control group present [group subjected to no intervention]	Control group absent		
Outcomes	Provides some measure of the efficacy of the intervention	Efficacy of the intervention not measured		
Others	Language: English	Other languages		
Others	Peer-reviews	Grey literature		

WG2 Methods

Fifteen pathogens identified as public health hazards from pigs

Clostridium botulinum	Salmonella spp.	
Clostridioides difficile	Sarcocystis spp.	
Clostridium perfringens	Taenia solium	
Campylobacter spp.	Toxoplasma gondii	
Hepatitis virus type E	Trichinella spiralis	
Listeria monocytogenes	VTEC	
MRSA	Yersinia enterocolitica	
Mycobacterium avium complex		

Pathogen	Records Identified	Records after Duplicates' Removal	Records Retained after Abstract Screening	ecords Retair after Full Tex Screening	
Clostridium botulinum	3	3	0	0	
Clostridioides difficile	8	7	0	0	
Clostridium perfringens	43	33	9	5	
Campylobacter spp.	156	115	3	2	
Hepatitis virus type E	101	77	0	0	
Listeria monocytogenes	12	11	0	0	
MRSA	194	139	9	1	
Mycobacterium avium complex	27	23	3	1	
Salmonella spp.	785	555	57	43	
Sarcocystis spp.	9	7	0	0	
Taenia solium	12	12	0	0	
Toxoplasma gondii	101	77	2	0	
Trichinella spiralis	63	50	2	0	
VTEC	5	5	1	0	
Yersinia enterocolitica	87	66	1	0	
TOTAL	1606	1180	87	52	

52 studies retained (1983 to 2020) and analysed

Salmonella spp.

Campylobacter spp.

MRSA

Mycobacterium avium

- For Salmonella: 43 studies, comprising 86 trials
 - In-feed and/or water treatments, and vaccination were the most tested interventions and were, overall, successful (72% and 87%)

Salmonella spp.

Campylobacter spp.

MRSA

Mycobacterium avium

- Most Salmonella studies were done in commercial farms (n=34 of 43, 79%).
- 8 trials tested the efficacy of antimicrobials to control Salmonella. Only 1 had positive results and it was a combined treatment with early off-site weaning.

Salmonella spp. (n=43)

Campylobacter spp.

MRSA

Mycobacterium avium

 Across all trials, the results for Salmonella are very encouraging, with 76% (65/86) of the trials assessed reporting positive results.

Salmonella spp. (n=43)

Campylobacter spp.

MRSA

Mycobacterium avium

 2 studies retained for Campylobacter spp. tested the efficacy of probiotics to reduce the colonisation of this pathogen as (competitive exclusion)

Salmonella spp.

Campylobacter spp.

MRSA

Mycobacterium avium

- 5 studies retained for *C. perfringens* assessed the
 efficacy of vaccinations (n
 = 4) and probiotics (n =
 1).
 - All studies reported positive outcomes for the interventions tested.

Salmonella spp.

Campylobacter spp.

MRSA

Mycobacterium avium

- MRSA: 1 RCT trial to test the efficacy of a thorough cleaning and disinfection protocol for sows and the environment to reduce the prevalence of MRSA in sows and their progeny.
 - Temporary reduction in sows and piglets but not translated into a reduction at weaning or nursery.

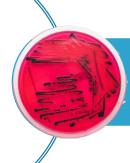
Salmonella spp.

Campylobacter spp.

MRSA

Mycobacterium avium

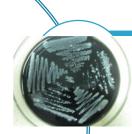
- Mycobacterium avium complex:1 study testing the efficacy of vaccination with two different vaccines (killed "whole cell" vs subunit) in experimentally challenged pigs.
 - Killed vaccine did not prevent disease but attenuated its severity.
 - Subunit vaccine had no effect compared to control


Salmonella spp.

Campylobacter spp.

MRSA

Mycobacterium avium



Salmonella: eligibility criteria may have eliminated effective interventions from our study

- At national level, Finland, Norway and Sweden have documented that the successful control of Salmonella in cattle, pigs and poultry through pre-harvest interventions is possible
- Heat-treatment of feed, and starting with breeding animals free from Salmonella at the top of the breeding pyramid have probably been the most important measures.

Campylobacter: It seems more cost-efficient to control this agent post-harvest

C. perfringens: In studies retained, the clinical outcome in pigs seemed to be the main worry, not shedding.

 Low risk, post-harvest interventions seem more appropriate once "risk of disease seems not to be correlated with occurrence in raw meat but rather to improper hygiene and storage"

MRSA: national control seems to be possible

 Norway has established a unique control strategy in their pig population, which includes population-wide annual surveillance, in addition to contact tracing upon detection of MRSA in pig farms and farm workers.

- Hepatitis E: new research in recent years, no papers meeting criteria defined. Vaccination could help control.
- Y. enterocolitica: one of the most important hazards.
 - Specific pathogen free programs seem to work though not included in our study
- T. gondii: outdoor pigs not included in this study.
 - Control of cat population may be helpful

Conclusions WG2

Across broilers and pigs, results were similar:

- Limitations: eligibility criteria might have eliminated effective interventions
- Some pathogens are frequently controlled by post-harvest interventions

WG2 Take home messages

- Some foodborne pathogens appear to be best controlled at a post-harvest level.
- Overall, high herd health status coupled with good management and biosecurity were effective to control or prevent most foodborne pathogens in pork.
- In spite of not having been included in the review, the SPF herd principle, stamping out and repopulating with disease-free animals, has been reported as a feasible and effective intervention to control foodborne pathogens like *Salmonella*, *Y. enterocolitica* and MRSA.

WG2 Systematic literature review on pre-harvest food safety interventions for bovine

Maria Rodrigues da Costa

WG2 Methods

Eligibility criteria - PICO

PICO	Inclusion Criteria	Exclusion Criteria	
	Animal species being evaluated: must include (but not limited to) beef cattle	Does not include actual or theoretical <pathogen> infection/contamination in beef cattle</pathogen>	
Population	Unit of study [animal, herd, house, barn, farm] and [surfaces, food, water, environment, drinkers, feeder, other animals]	Others	
Intervention	Interventions to control/reduce/eradicate <pre> <pre></pre></pre>		
Tittel velition	Interventions on-farm or during transport (pre- harvest)	Interventions on lairage, at slaughter and post- harvest	
	Field/experimental studies	Lab/bench studies	
Comparison	Control group present [group subjected to no intervention]	Control group absent	
Outcomes Provides some measure of the efficacy of the intervention		Efficacy of the intervention not measured	
Others	Language: English	Other languages	
Others	Peer-reviews	Grey literature	

Methods WG2

21-Jun-2022

thirteen pathogens identified as public health hazards from cows

Bacillus anthracis	Methicillin Resistant Staphylococcus Aureus (MRSA)
Bacillus cereus	Salmonella spp.
Campylobacter spp.	Sarcocytis hominis
Clostridium botulinum	Verocytotoxigenic <i>Escherichia coli</i> (VTEC)
Clostridium perfringens	Taenia saginata
ESBL-Amp C gene-carrying bacteria	Toxoplasma gondii
Listeria monocytogenes	

Pathogens	Records Identified	Records after Duplicates' Removal	Records Retained after Abstract Screening	Records Retained after Full Text Screening
Bacillus anthracis	48	42	3	0
Bacillus cereus	30	30	0	0
Campylobacter spp.	244	211	9	1 a
Clostridium botulinum	31	27	5	2
Clostridium perfringens	40	38	3	2
ESBL-Amp C gene- carrying bacteria	107	90	2	1
Listeria monocytogenes	94	84	3	0
Methicillin Resistant Staphylococcus Aureus	108	100	0	0
(MRSA)				
Salmonella spp.	541	456	43	16°
Sarcocytis hominis	9	8	0	0
VTEC	363	323	32	14 a
Taenia saginata	41	37	4	0
Toxoplasma gondii	77	68	0	0
TOTAL	1733	1514	104	36

36 studies were retained

Salmonella spp.

VTEC

Campylobacter

Clostridium botulinum

Clostridium perfringens

ESBL-AmpC

Rough overview

Salmonella	sp	р.
------------	----	----

VTEC

Campylobacter

Clostridium botulinum

Clostridium perfringens

ESBL-AmpC

Vaccination	N= 6 studies 4x - no effect, 1x- increased immunity, 1x - partial effect
Feed additives and treatments	N= 4 1x - oral admin of anti-salmonella bacterium - positive effect 2x - probiotics 1/ effect not clear - 1/ positive effect 1x IgY admin - positive effect
Antibiotic	N= 1 - no long term effect
Biosecurity	N= 1 - Bird control - Salmonella reduction in the environment but not on shedding
Cleaning and disinfection	N= 1 - positive effect
Management	N= 3 1x Sprinklers to alleviate stress - positive effect, 2x Milk pasteurisation: -1x positive effect, - 1x no effect

Rough overview

Salmonella spp.

VTEC

Campylobacter

Clostridium botulinum

Clostridium perfringens

ESBL-AmpC

Vaccination	N= 4 1x no effect/effect not clear, 3x positive effect
Feed additives and treatments	N= 2 2x probiotics - - 1x effect not clear, - 1x no effect
Combination of measures	N= 2 1x package of interventions - positive effect, 1x vaccination and probiotic - effects not clear
Cleaning and disinfection	N= 1 1x water disinfection/ treatments – positive effect but taste challenges led to reduced water consumption
Management	N= 2 - positive effects 1x water availability 1x manure compost
Transport and lairage	N= 3 1x washing trucks - positive effect, 1x preconditioning - positive effect, 1x no effect (more power needed),
l Maria Dadriguas da Casta	20

Salmonella spp.

VTEC

Campylobacter

Clostridium botulinum

Clostridium perfringens

ESBL-AmpC

1x **combined measures** (feed additives and hide spray)

- "Effects of feed-supplementation and hide-spray application of two sources of tannins on enteric and hide bacteria of feedlot cattle" (10.1080/03601234.2011.559419)
- No effect seen in decreasing bacterial counts

Salmonella spp.

VTEC

Campylobacter

Clostridium botulinum

Clostridium perfringens

ESBL-AmpC

21-Jun-2022

2x vaccination:

- "Neonatal immune response of Brazilian beef cattle to vaccination with Clostridium botulinum toxoids types C and D by indirect ELISA"(10.1590/s1678-91992010000300018)
- "Efficacy of Clostridium botulinum types C and D toxoid vaccination in Danish cows" (10.1016/j.anaerobe.2013.06.011)
- Increased immunity

Salmonella spp.

VTEC

Campylobacter

Clostridium botulinum

Clostridium perfringens

ESBL-AmpC

21-Jun-2022

1x Feed additives:

- "Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts" (10.1016/s0301-6226(00)00233-5)
- Seems to have positive effects

1x vaccination:

- "Induction of potential protective immunity against enterotoxemia in calves by single or multiple recombinant Clostridium perfringens toxoids" (10.1111/1348-0421.12198)
- Increased immunity

Salmonella spp.

VTEC

Campylobacter

Clostridium botulinum

Clostridium perfringens

ESBL-AmpC

1x feed additive/probiotics:

- "The effect of Enterococcus faecium M74 feed additive on the extended-spectrum beta-lactamases/AmpC-positive Escherichia coli faecal counts in pre-weaned dairy calves" (10.2754/avb201786040333)
- No effect seen


WG2 TEAM

21-Jun-2022

References // outputs WG2

Pessoa, J.C., Rodrigues da Costa, M., Nesbakken, T, Meemken, D. 2021. Assessment of the effectiveness of pre-harvest meat safety interventions to control foodborne pathogens in broilers: a systematic review. Current Clinical Microbiology Reports (2021).

https://doi.org/10.1007/s40588-021-00161-z

 Rodrigues da Costa, M., Pessoa, J.C., Meemken, D. Nesbakken, T. 2021. A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens. Microorganisms, 9, 1825.

https://doi.org/10.3390/microorganisms9091825

21-Jun-2022

Thank you for the attention. Please join us at RIBMINS

www.cost.eu

