

EU COST ACTION Ribmins Training school

farm and abattoir interventions

Part I - chemical abattoir interventions

Part II - microbiological validation of interventions

www.cost.eu

Risk-based meat inspection and integrated meat safety assurance

Kurt Houf

Faculty veterinary medicine Department of veterinary and biosciences

> Ghent University University of Antwerp

- 1. concept
- 2. classes and mode of action
- 3. way of application
- 4. some literature data
- 5. perspectives and critical reflections

– 1. concept

In the EU, the fundamental principle of controlling microbial contamination during slaughter is based on sanitary and hygienic processes.

Both choosing abattoir technologies and conducting individual operations should be approached with the primary goal of preventing contamination and minimizing microbial load on the carcass.

© K. Houf

- 1. concept

Even when best hygienic abattoir practices are applied, complete prevention of all microbial contamination of carcasses is unachievable under commercial conditions.

Therefore, in some situations, it may be considered necessary to further reduce the microbial loads on carcasses through application of additional **interventions**

i.e. decontamination treatments.

(Buncic and Sofos, 2012, Food research international)

– 1. concept

Several intervention technologies have been tested to reduce the microbial contamination of carcasses. These can be divided into three major types:

- I. physical (e.g. hot water, steam, steam vacuuming),
- II. chemical (e.g. organic acids, chlorine, acidified sodium chlorite, polyphosphates)
- III. biological (bacteriophages, bacteriocins).
- IV. or combinations of the above technologies

(Hugas et. al, 2008, Meat science)

- 1. concept

- 1. concept

WHO – FAO defined some practical implementation factors to be considered by the establishment manager when choosing an intervention. These vary with the establishment, intervention type and point of application, and include:

- ability to contribute to targeted hazard control objectives
- cost-effectiveness
- reliable and timely supplies of materials or other resources, e.g. chemicals, power
- adequate quantity and reliable supply of potable water
- impact of chemicals on equipment, and effect of accumulation in the establishment environment
- development of resistance in bacterial strains with long-term use of chemicals and biocides
- occupational and safety risks to workers
- acceptance of intervention agents as food additives by regulators in domestic and export markets; and need for labelling.
- technical complexity and ease of use
- cost and availability of infrastructure, with ongoing maintenance
- impact on meat quality
- consumer acceptance
- environmental impact, e.g. waste disposal and pollution

1.

low-molecule organic acids (e.g. lactic, acetic, citric, fumaric acid)

The antibacterial action of low molecule organic acids is

- 1. due to the lowering of the pH on the surface of the product (e.g. carcass)
- 2. its ability in the undissociated form to penetrate the cytoplasmic membrane, resulting in reduced intracellular pH and disruption of the transmembrane proton motive force.

- 2. classes and mode of action

2. Chlorine-based treatments chlorine and chlorine dioxide hypochlorite, sodium hypochlorite, sodium chlorite acidified sodium chlorite cetylpyridinium chloride monochloramine

Chlorine compounds destroys microorganisms by chlorinating the lipid protein substance in the bacterial cell wall to form toxic chloro-compounds and induces the leakage of macromolecules from the cells.

Cetylpyridinium chloride (CPC), first described in 1939, is a *quaternary ammonium*, water-soluble, colorless, broadspectrum antimicrobial agent. It has been used for over 50 years in oral hygiene products including toothpaste, throat lozenges, and mouthwashes. Because of their low surface tension, hydrophilic, and lipophilic properties, quaternary ammonium compounds absorb into the bacterial cell surface, permeate and destroy the cell wall and cell membrane, and have a direct or indirect lethal effect on the cell. In the specific case of CPC, it has been shown that it interact strongly with negatively charged surfaces, and that the antibacterial activity is related to the hydrophobicity. The degree of damage to the bacterial membrane is however time and concentration dependent.

2. Chlorine-based treatments

chlorine and chlorine dioxide hypochlorite, sodium hypochlorite, sodium chlorite acidified sodium chlorite cetylpyridinium chloride monochloramine

Monochloramine is a powerful oxidant that disrupts bacterial protein synthesis.

It has it application as drinking water and wound disinfectants.

In poultry decontamination studies, monochloramine exerted stronger antibacterial activity than NaOCl, probably due

to a lesser extent inactivated by organic matter.

3. Trisodium phosphate

Trisodium phosphate (TSP) is an alkaline detergent that removes attached bacteria from carcass surfaces by means of its surfactant properties and high alkalinity (pH about 12.0). In addition, TSP kills bacteria by disrupting the cell membrane and causing leakage of cellular material.

Occasionally, the antibacterial activity of other chemicals such as:

➢ peroxides

- \succ sulfate-based compounds
- ➢ sodium hydroxide (NaOH)

Based on the evaluated studies,

acetic and lactic acid, acidified sodium chlorite (ASC), and trisodium phosphate (TSP)

in particular proved to be effective for reducing the bacterial load

- 3. application

Spraying

by hand

- 3. application

------8 BIRKO

Spraying

by hand

cabinet

- 3. application

Spraying

by hand

cabinet

- 3. application

Spraying

by hand

cabinet

Immersion (dipping)

Cattle hide treatments

Chemical washes

- 1. Oxidisers (peroxyacetic acid (PAA), hypobromous acid, hydrogen peroxide, ...)
- 2. Quaternary ammonium compounds
- 3. Other chemicals (chlorine solutions, cetylpyridinium chloride (CPC), sodium hydroxide, sodium metasilicate, trisodium phosphate (TSP)

chemical dehairing process

process of applying successive water and chemical washes (sodium sulphide followed by a neutralizing solution of hydrogen peroxide) in a cabinet to remove hair and improve visible cleanliness and reduce microbial loads on animal hides.

- 4. some literature data

- 4. some literature data

Microbial immobilization treatment ('shellac hide coating')

Spray treatment of cattle hides with natural resin (shellac), to form a protective coating as a barrier to microorganisms resulting in the reduction in their transfer to beef carcasses

Antic D. et al. 2010. Meat Science, 85, (1):77-81

Summary of findings for cattle hide interventions: studies under commercial condition measuring bacteria counts.

Intervention [‡]	No. studies/ design	Intervention/outcome surface	Microorganism	Log ₁₀ CFU reduction ^a	Reference				
Pre-exsanguination interventions									
Water wash & CPC (1%)	1/CT	Live animal hide/	Aerobic bacteria	1.5	Bosilevac, Arthur, et al. (2004)				
		carcass*	Enterobacteriaceae	1.1					
Post-exsanguination washing/clippi	ng								
Water wash/manual curry comb	1/BA	Veal calf hide	Aerobic bacteria	0.8	Wang et al. (2014)				
			Enterobacteriaceae	3.5					
			E. coli	1.6					
Warm water wash	1/BA	Hide cut lines	Aerobic bacteria	0.1	Scanga et al. (2011)				
Hide clipping (dirty hides)	2/CT	Hide/carcass*	Aerobic bacteria	0.1-0.3	Van Donkersgoed et al. (1997), McCleery et al.				
- · · ·			E. coli	0.3	(2008)				
Organic acids									
Acetic acid (5%)	1/BA	Hide cut lines	Aerobic bacteria	2.6	Scanga et al. (2011)				
			E. coli	3.7					
Lactic acid (6%)	1/BA	Hide cut lines	Aerobic bacteria	2.3					
Other shere include			E. coli	3.7					
Chloring (ACC (200 mm))	1.004	Weel colf bide	A such is hereits	1.0	Ware at al. (2014)				
Chiorine/ASC (200 ppm)	I/BA	veal call hide	Aerobic bacteria	1.5	wang et al. (2014)				
			Enterobacteriaceae	1.0					
Water week & acdium hudrovide	1/CT	Hide (aaraaas*	E. coll Aerobia basteria	1.0	Regileures Neu et al. (2005)				
(1 5%)	1/01	Hue/carcass	Enterobacteriaceae	0.8	Bosnevac, Nou, et al. (2005)				
Water wash & sodium hydroxide	2/84	Hide	Aerobic bacteria	1.5_2.1	Bosilevac Nou et al (2005) Vang Badoni Trar				
(1.5%)	2, 2.1	Inde	Enterobacteriaceae	3.4	and Gill (2015)				
Sodium hydroxide (3%)	1/BA	Hide cut lines	Aerobic bacteria	1.6	Scanga et al. (2011)				
			E. coli	3.5					
TSP (20%)	1/BA	Hide	Aerobic bacteria	1.8	Calicioğlu et al. (2010)				
Ethanol (75%)	1/BA	Hide	Aerobic bacteria	1.2	,				
A proprietary QAC sanitiser &	1/CT	Hide/carcass*	Aerobic bacteria	1.0	Antic et al. (2011)				
vacuuming			Enterobacteriaceae	1.3					
_			E. coli	1.2					
Chemical dehairing and thermal int	erventions								
Chemical dehairing	1/CT	Hide/carcass*	Aerobic bacteria	2.0	Nou et al. (2003)				
			Enterobacteriaceae	1.8					
Hot water wash	1/BA	Hide cut lines	Aerobic bacteria	3.6	Çalicioğlu et al. (2010)				
Chlorine spray & hot water rinse	1/BA	Veal calf hide	Aerobic bacteria	2.1	Wang et al. (2014)				
			Enterobacteriaceae	2.7					
			E. coli	2.6					
Microbial immobilisation treatment	s								
Shellac in ethanol hide coating	1/CT	Hide/carcass*	Aerobic bacteria	1.7	Antic et al. (2011)				
			Enterobacteriaceae	1.4					
			E. coli	1.3					
Aqueous shellac hide coating	1/CT	Hide/carcass*	Aerobic bacteria	0.3-1.1	Antic et al. (2018)				
			Enterobacteriaceae	0.1-0.7					

‡ Acidified sodium chlorite (ASC), trisodium phosphate (TSP), cetylpyridinium chloride (CPC), quaternary ammonium compounds (QAC).

* Reduction in hide-to-carcass transfer.

CT: Controlled trial; BA: Before-and-after trial.

^a The comparison group was in all cases "no treatment" (controlled trials) and "pre-treatment" (before-and-after trials).

Intervention [‡] No. studies/ design		Intervention/outcome surface	Microorganism	% of samples study popula	positive in tion	Reference		
				No treat- ment ^a	Treat- ment			
Pre-exsanguination interventions								
Water wash	1/BA	Live animal hide/hide	Salmonella	36-58%	40-72%	Mies et al. (2004)		
Lactic acid (0.5%)	1/BA			50.0%	52.2%			
Chlorine	1/BA			60.0%	55.6%			
Water wash & CPC (1%)	1/CT	Live animal hide/hide	E. coli 0157	56%	34%	Bosilevac, Arthur, et al. (2004)		
	1/CT	Live animal hide/carcass*	E. coli 0157	23%	3%			
Bacteriophage Finalyse® spray	1/CT	Live animal hide/hide	E. coli 0157:H7	57.6	51.8	Arthur et al. (2017)		
	1/CT	Live animal hide/carcass*	E. coli 0157:H7	17.6 17.1				
Post-exsanguination washing/clippin	S							
Water wash	1/BA	Hide	E. coli 0157:H7	62.5%	38.4%	Arthur et al. (2008)		
			Salmonella	88.1%	24.3%			
Water wash & chlorine	2/BA	Hide	E. coli 0157:H7 ^b	4-35%	1-13%	Arthur et al. (2007), Bosilevac et al.		
			Salmonella ^b	27-40%	7-13%	(2009)		
Water wash/manual curry comb	1/BA	Veal calf hide	E. coli 0103	26%	17%	Wang et al. (2014)		
			E. coli 0111	23%	1796			
Warm water wash	1/BA	Hide cut lines	E. coli 0157:H7	78.0%	84.0%	Scanga et al. (2011)		
			Salmonella	68.0%	88.0%			
Organic acids								
Acetic acid (5%)	1/BA	Hide cut lines	E. coli 0157:H7	76%	30%	Scanga et al. (2011)		
Lactic acid (6%)	1/BA		E. coli 0157:H7	84%	56%			
			Salmonella	74%	50%			
Other chemicals								
Water wash/sodium hydroxide	1/CT	Hide/carcass*	E. coli 0157	17%	2%	Bosilevac, Nou, et al. (2005)		
(1.5%)	1/BA	Hide		44%	16%			
Sodium hydroxide (3%)	1/BA	Hide cut lines	E. coli 0157:H7	94%	41%	Scanga et al. (2011)		
			Salmonella	60%	43%			
Chemical dehairing								
Chemical dehairing	1/CT	Hide/carcass*	E. coli O157:H7	50%	196	Nou et al. (2003)		

Summary of findings for cattle hide interventions: studies under commercial conditions measuring prevalence reductions.

‡ Cetylpyridinium chloride (CPC).

* Reduction in hide-to-carcass transfer.

CT: Controlled trial; BA: Before-and-after trial.

^a The comparison group was in all cases "no treatment" (controlled trials) and "pre-treatment" (before-and-after trials).
^b Percentage of total samples that had *E. coli* O157:H7 and *Salmonella* spp. counts at or above the detection limit of 40 CFU/100 cm² after enumeration.

Chemical washes of carcasses

Washes containing other chemicals and oxidizers

Include washes containing products that destroy bacteria through various actions, such as oxidation and disruption of cellular functions, or that prevent bacterial attachment to meat.

Examples include: peroxyacetic acid (PAA), acidified sodium chlorite (ASC), hydrogen peroxide, trisodium phosphate (TSP)

- 4. some literature data

Summary of findings for beef carcass interventions: studies under commercial conditions measuring bacteria counts	5.
---	----

Intervention [‡]	No. studies/ design	Intervention/ outcome surface	Microorganism	Log ₁₀ CFU reduction ^a	Reference
Organic acid washes					
Lactic acid	5/BA	Carcass	Aerobic bacteria	0.9-3.8	Bosilevac et al. (2006), De Martinez et al. (2002), Dormedy,
	2/CT		Enterobacteriaceae	0.4-1.0	Brashears, Cutter, and Burson (2000), Rodriguez (2007), Ruby and
			E. coli	0.1-1.8	Ingham (2007), Signorini et al. (2018), Wright (2011)
Acetic acid	2/BA	Carcass	Aerobic bacteria	0.4-0.6	Algino et al. (2007), Carranza et al. (2013), Signorini et al. (2018)
	1/CT		Enterobacteriaceae	1.0	
			E. coli	0.5-0.7	
Citric acid	1/BA	Carcass	Aerobic bacteria	0.8	Signorini et al. (2018)
			E. coli	0.4	
Organic acid mixtures	2/BA	Carcass	Aerobic bacteria	0.2	Algino et al. (2007), Signorini et al. (2018)
			Enterobacteriaceae	0.6	
			E. coli	0.1-0.9	

- 4. some literature data

Intervention [‡]	No. studies/ design	Intervention/ outcome surface	Microorganism	% of sample study popul	s positive in ation	Reference		
			No treat- ment ^a	Treat- ment				
Standard processing procedures and	GHP					_		
Downward hide pulling	1/CT	Carcass*	Enterobacteriaceae	83%	94%	Kennedy et al. (2014)		
Bung bagging	1/CT	Carcass*	VTEC non-O157	58%	35%	Stopforth et al. (2006)		
			E. coli 0157:H7	5%	1.7%			
			Salmonella	8.3%	0.0%			
Thermal interventions								
Hot water	2/BA	Carcass	Enterobacteriaceae	19-27%	12-15%	Algino et al. (2007), Bosilevac et al. (2006)		
			E. coli	18-24%	396			
			E. coli 0157:H7	27%	5%			
Steam pasteurisation	2/BA	Carcass	Enterobacteriaceae	46%	396	Corantin et al. (2005), Nutsch et al. (1997)		
			E. coli	14-16%	0-1.8%			
			Salmonella	0.7%	0%			
Organic acid washes								
Lactic acid	3/BA	Carcass	E. coli 0157:H7	31%	20%	Bosilevac et al. (2006), Chaves et al. (2013), Ruby		
			VTEC non-O157	6.7%	0%	and Ingham (2007)		
			Salmonella	45%	28%			
Acetic acid	1/BA	Carcass	Enterobacteriaceae	58%	30%	Algino et al. (2007)		
			E. coli	47%	13%			
Organic acid mixtures	1/BA	Carcass	Enterobacteriaceae	28%	22%			
			E. coli	24%	7%			
Hot water/LA	2/BA	Carcass	E. coli 0157:H7	19%	496	Bosilevac et al. (2006), Ruby and Ingham (2007)		
			Salmonella	28%	2.3%			
Multiple interventions applied at mu	iltiple steps							
Steam vacuum, PAA & organic	5/BA	Carcass	E. coli 0157:H7	4-43%	0-17%	Arthur et al. (2004), Elder et al. (2000), Kanankege		
acid washes, thermal			VTEC non-O157	70-79%	14-62%	et al. (2017), Rekow et al. (2011), Ruby and		
interventions			Salmonella	45%	296	Ingham (2007)		

Summary of findings for beef carcass interventions: studies under commercial conditions measuring prevalence reductions.

‡ Lactic acid (LA), peroxyacetic acid (PAA).

* Reduction in transfer to carcass.

CT: Controlled trial; BA: Before-and-after trial.

^a The comparison group was in all but one case "no treatment" (controlled trials) and "pre-treatment" (before-and-after trials); In the "downward hide pulling" a comparison group was "upward hide pulling".

- 4. some literature data

pre-chilling carcass interventions

Only a few studies investigated the antibacterial efficacy of organic acids on naturally contaminated pig carcasses under commercial conditions.

lactic acid acetic acid citric acid

acidified sodium chlorite (ASC)

washing spraying before - after - before and after evisceration

> Zdolec N. *et al.*, 2022, MDPI submitted Loretz M. *et al.*, 2011, Food Control, 22, 1121-1125

- 4. some literature data

chemical decontamination treatments for poultry carcasses

Organic acids

acetic acid
lactic acid
citric acid

chlorine-based treatments

chlorine and chlorine dioxide
hypochlorite, sodium hypochlorite, and sodium chlorite .
acidified sodium chlorite
cetylpyridinium chloride
monochloramine

Phosphate-based treatments

1. trisodium phosphate

2. other phosphate-based compounds

Other chemical treatments

Antibacterial activity of acetic and lactic acid treatments on the surface of poulity carcasses and parts.

Antibacterial activit	y of chlorinated water.	addified sodium of	hlorite, and o	etylpyridi nium chloride	on the surface of	poultry	carcasses and parts.

Northcutt et al. (2005) Sinhamahapatra et al.

Stopforth et al. (2007) Stopforth et al. (2007) Northcutt et al. (2005)

Li et al. (2002) Sinhamahapatra et al.

(2004)Kemp et al. (2000) Kemp, Aldrich, Guerra, and Schneider (2001) Kemp et al. (2000) Del Río et al. (2007) Sinhamahapatra et al.

(2004)Kemp et al. (2000) Del Río et al. (2007) Kemp et al. (2001) Kemp et al. (2000)

Artificial

Artificial

NA

15 or 50

1

1-3

Yang et al. (1998) Xiong et al. (1998) Riedel et al. (2009) Yang et al. (1998) Wang et al. (1997)

Xiong et al. (1998)

Kim and Slavik (1996)

Kim and Slavik (1996)

Stopforth et al. (2007) Stopforth et al. (2007) Northcutt et al. (2005) Stopforth et al. (2007) Stopforth et al. (2007) Northcutt et al. (2005)

Del Río et al. (2007) Secton et al. (2007) Sinhamahapatra et al.

Agent/ microorganism	Reduction (log CFU)	Treated material	Application*	Sampling point	Concentration	Contamination	Temperature (°C)	Exposure time (min)	Reference	Agent/ microorganism	Reduction (log CFU)	Treated material	Application*	Sampling point	Concentration	Contamination	Temperature (℃)	Exposure time (min)	Reference
Acetic acid										Chlorine									
Aerobic bacteria	2.0 ml ⁻¹ 0.9–1.7 ml ⁻¹	Carcass Carcass	IC IC	During slaughter After slaughter	20 ppm 0.6%	Artificial Natural	4 Ice water	45 60	Fabrizio et al. (2002) Didoens and Whittemore (1995)	Aerobic bacteria	2.1–2.3 ml ⁻¹ 0.9 cm ⁻²	Cartass Cartass	SP IM or SP	During slaughter During slaughter	55 pp m 50 pp m	Artificial Natural	21-54 NA ^b	0.1 5	Northcutt et al. (2 Sinhamahapatra e
	0,6 ml ⁻¹	Carcass	SP	During slaughter	1%	Natural	23	0,8	Dickens and Whittemore (1997)		0,5 ml ⁻¹ 0,1 –0,3 ml ⁻¹	Cartass Cartass	IC SP	After slaughter During slaughter	20-50 ppm 20-50 ppm	Natural Natural	NA NA	NA NA	Stopforth et al. (2) Stopforth et al. (2)
	0.5-0.8 cm ⁻²	Carcass	SP	During slaughter	0.5%	Natural	NA ^o	NA 0.2	Sakhare et al. (1999) Fabricie et al. (2002)	Compylobacter spp.	25-26 ml ⁻¹	Carrass	P	During slaughter	55 pp.m	Artificial	21-54	0.1	Northcutt et al. (2
	03-0.4 ml ⁻¹	Carcass	IM	After slaughter	0.3-0.6%	Natural	10	10	Dickens and Whittemore (1994)	Campylobacter j ejuni	2.6-3.0 g ⁻¹	Wing	IM	At retail	50 ppm	Artificial	4 or 23	10 or 30	Park et al. (2002)
	0,2-0,7 cm ⁻²	Carcass	IM	During slaughter	0.5%	Natural	NA or 58	1 or 2	Sakhare et al. (1999)		2.1g ⁻¹	Carcass	IM	During slaughter	73 ppm	Artificial	3	40	Kim et al. (2005)
Campylobacter jejuni	1.2-1.4 g ⁻¹	Wing	IM	At retail	2%	Artificial	4	0,3-0,8	Zhao and Doyle (2006)		1.9-2.5/carcass	Carcass	SP/IC	During slaughter	50 pp m	Artificial	20-60/NA	0.2/50	Li et al. (2002)
Coliforms	3.0 ml ⁻¹	Carcass	IC	During slaughter	20 ppm	Artificial	4	45	Fabrizio et al. (2002)		1.8-2.2/carcass	Carcass	9P	During slaughter	50 pp m	Artificial	55-60	0.2	Li et al. (2002)
	0,9-2,2 cm ⁻²	Carcass	IM	During slaughter	0,5%	Natural	NA	1	Sakhare et al. (1999)		1,3-1,7 cm *	Careass	IM CD	During slaughter	S0 ppm	Artificial	60-65	0.3	Li et al. (2002)
	0.1-1.0 cm ⁻²	Carcass	SP	During slaughter	0.5%	Natural	NA	NA	Sakhare et al. (1999)		0.5-0.7 cm ⁻²	Carcass	IM	During slaughter	50 ppm	Artificial	20-55	0.3	Li et al. (2002)
Enterobacteriaceae	2.3 ml ⁻¹	Carcass	IM	After slaughter	230	Natural	10	10	Dickens and	Colliforms	07 cm ⁻²	Carrass	м	During slaughter	50 mm	Natural	NA	5	Sinhamahanatra e
	06-18 ml ⁻¹	Carcass	IM IC	After slaughter	0.3%	Natural	lor water	60	Dickens and	Contornia	0.6 cm ⁻²	Carcass	9	During slaughter	50 ppm	Natural	NA	5	(2004)
	00-1,0 11	Cartante		Autor autograd	0,010		The Practice		Whittemore (1995)		0,4 ml ⁻¹	Carcass	IC	After slaughter	20-50 ppm	Natural	NA	NA	Stopforth et al. (2
Eschrichia coli	2.8ml ⁻¹	Carcass	IC	During slaughter	20 ppm	Artificial	4	45	Fabrizio et al. (2002)		02-0,3 ml ⁻¹	Carcass	92	During slaughter	20-50ppm	Natural	NA	NA	Stopforth et al. (2
	0.5-1.2/10 cm ²	Breast	SP	At processing	0.1-0.3%	Artificial	20-55	0,1-0,3	Jiménez, Destefanis,	Escherichia coli	1.9-2.1 ml ⁻¹	Carcass	ም	During slaughter	55 pp m	Artificial	21-54	0.1	Northcutt et al. (2
									Salsi, Tiburzi, and		0.3 ml ⁻¹	Cartass	IC C	After slaughter	20-50 ppm	Natural	NA	NA	Stopforth et al. (2
Salmonella Hadar	1.8-2.0/10 cm ²	Breast	SP	At processing	2.5%	Artificial	55	0,5	Pirovani (2005) Ji ménez, Caliusco,	Salmanella spp.	0,2-0,3 ml ⁻¹	Carcass	92 92	During slaughter During slaughter	20-50ppm 55 ppm	Artificial	NA 21-54	NA 0.1	Stopforth et al. (2) Northcutt et al. (2)
									Tiburzi, Salsi, and				-						
	10.10/102		CD		1.00	And Restor	25	02.04	Pirovani (2007)	Acidified sodium chlo	rite								
	1.2-1.8/10 cm	Breast	3 P	At processing	1-2,5%	Artindal	-	0,2-0,4	Jimenez et al. (2007)	Aerobic bacteria	2.0g ⁻¹	Leg	IM	During slaughter	1200 ppm	Natural	18	15	Del Río et al. (200
Salmonella	1.4ml ⁻¹	Carcass	C CD	During slaughter	20 ppm 20 ppm	Artificial	4	45	Fabrizio et al. (2002) Fabrizio et al. (2002)		1.6cm ⁻²	Wing	IM	After chilling	900 pp m	Artificial	NA	0.3	Secton et al. (200
Charlestone	12.182	Cancasta	-14 CD	During sharphter	20 ppm	Natural	NA	NA	Faldane et al. (2002)		1.1 cm ⁻²	Cartass	IM	After slaughter	1200 ppm	Natural	20	0.1	Sinhamahapatra e
sapnyia a cus aureus	05-0.7 cm ⁻²	Carcass	SP IM	During slaughter	0.5%	Natural	NA or 58	1 or 2	Sakhare et al. (1999) Sakhare et al. (1999)		08-1.0 ml ⁻¹	Carcass	SP IM	After slaughter	1200 ppm 500-	Natural	12-14	0.1	(2004) Kemp et al. (2000
	647 - 647 Gan	Carl Carlo		sand sugar				1 01 2	(1200)		00-100	Carcast		A CONTRACTOR OF	1200 ppm				and a sector
										Campylobacter spp.	2.6ml ⁻¹	Cartass	92	After slaughter	1100 ppm	Natural	14-18	0,3	Kemp, Aldrich, Gu and Schneider (2)
				Rood Control 21	(2010) 791-804	4				Coliforms	1.5-2,0 ml ⁻¹	Carcass	IM	After slaughter	850- 1200 ppm	Natural	12-14	0.1	Kemp et al. (2000
											1.4g ⁻¹	Leg	IM	After slaughter	1200 ppm	Natural	18	15	Del Río et al. (200
LUCER MARCHINE			Con	tents lists avail	able at Scien	ceDirect			T CONTROL		1.4cm ⁻²	Cartass	IM	After slaughter	1200 ppm	Natural	20	0.1	Sinhamahapatra e
ALC: NOT			CON	torto noto avan	able at outen	ocenco			FOOD CONTROL		1.1 cm ⁻²	Cartass	92	After slaughter	1200 ppm	Natural	20	0.1	(2004)
and the second second					- · · ·				CONTROL	Paters has been a second	0.9 ml ⁻¹	Carcass	IM	After slaughter	500 ppm	Natural	12-14	0.1	Kemp et al. (2000 Del Rís et al. (200
1-200 Engl				Food	Control				CONTROL	Escherichia coli	2.3ml ⁻¹	Carcass	9P	After slaughter	1200 ppm 1100 ppm	Natural	14-18	0.3	Kemp et al. (200
S. S.									CONTROL		2.3 ml ⁻¹	Cartass	IM	After slaughter	500-	Natural	12-14	0.1	Kemp et al. (2000
ISEVIER		journa	al homep	age: www.e	lsevier.com	n/locate/fo	odcont		CONTROL						1200 ppm				
										Cetylpyridin ium ch br	ide								
										Aerobic bacteria	2,2/carcass	Carcass	ም	During slaughter	0.5%	Artificial	35	0.28	Yang et al. (1998)
eview											1.6-2.0 ml ⁻¹	Breast	ም	During slaughter	0.1-0.5%	Artificial	20	0.5	Xiong et al. (1998
ntimicrobi	al activit	v of o	deconta	aminatio	n treatm	ents for	poultry	v carc	asses:	Campylobacter j ejuni	>4.2 ml ⁻¹	Carcass	IM	At retail	0.5%	Arifidal	20	1	Riedel et al. (2009
124 construction		,					Pound.	,		Salmanella	2.0/carcass	Carcass	92	During slaughter	0.5%	Artificial	35	0.28	Yang et al. (1998)
Interature	survey									Typhimurium	1.5-2.5/38.5 cm ²	Breast	39	After chilling	0.1%	Artificial	10-60	0.5	Wang et al. (1997
											1.5-1.9 mi *	B reast	34	During slaughter	0.1-0.5%	Arcincial	20	0.5	Along et al. (1998

Marianne Loretz, Roger Stephan, Claudio Zweifel*

Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, 8057 Zurich, Switzerland

^a IM, immersion; SP, spraying; IC, immersion chilling.

1.0-1.6 cm⁻²

0,9-1.7 cm⁻²

Breast SP

IM

After chilling 0.1%

After chilling 0.1%

Breast

^b NA, not available.

There are three main aspects to be considered with chemical interventions:

- i) safety of the intended substance itself,
- ii) Its effect as to the development of antimicrobial resistance and
- iii) the efficacy i.e. does the use of the substance in practice decrease the level of contamination of pathogenic microorganisms.

For this purpose,

EFSA issued a guidance document (EFSA, 2006) which points out the major components and data that a dossier/application should contain in order to demonstrate that the substance intended to be used for the <u>removal of microbial surface contamination</u> of foods of animal origin is both safe and efficacious.

3.5. Methods of analysis

All methods used for the **microbial analyses** and for the analysis of the substance(s), its (their) degradation products and major reaction by-products should be provided by the applicant (including detailed protocols, validity and performance parameters, etc.).

EFSA The BIOHAZ Panel concluded that the use of substance(s) for decontaminating treatments will be regarded efficacious

 when any reduction of the prevalence and/or numbers of pathogenic target pathogenic microorganisms is statistically significant when compared to the control (e.g. water)

and, at the same time

this reduction has a positive impact on reduction of human illness cases (EFSA, 2008a).

The efficacy depends on a range of factors such as

- concentration
- contact time
- temperature
- mode of application
- Initial microbial load of the surface
- other conditions of application.

Factors with an impact or causing bias on microbiological results

Intrinsic factors

Extrinsic factors

acid tolerance

Factors with an impact or causing bias on microbiological results

Intrinsic factors

1. metabolic state and bacterial strain heterogeneity => *important when using inoculum testing*

Extrinsic factors

1. sampling method

before and after study

sampling the same place only once

Factors with an impact or causing bias on microbiological results

Intrinsic factors

1. metabolic state and bacterial strain heterogeneity => *important when using inoculum testing*

Extrinsic factors

- 1. sampling method
- 2. analysis method

➢ "1" colony represents "1" cell

- with normalized methods (e.g. ISO): awareness of standard error and uncertainty of measurement
- \succ there is a (technical) detection limit

Yu Z. *et al.* Food microbiology, 2019, V 82

The term was suggested by Ingram in 1977 for a marker whose presence indicated the possible presence of an ecologically similar pathogen.

Indicator organism can be applied to any taxonomic, physiological or ecological group of organisms whose presence or absence provides indirect evidence concerning either a particular feature in the past history of the sample, or the contemporary presence of a feature not directly investigated.

Microbial validation of the intervention

The same ... but not the same ...

Enterobacteriaceae

There are about 20 genera in the family Enterobacteriaceae, which include *E. coli* and the group of coliform bacteria. Members of the family are Gram-negative, facultative anaerobes and rod-shaped. Numerous Enterobacteriaceae are found in the intestines of humans and other animals, some occur in water or soil whereas others are parasites on animals and plants.

coliform bacteria

are common in the feces of warm-blooded animals and can be found in aquatic environments, in soil and on vegetation. Coliform bacteria do not usually trigger serious illnesses. Due to the fact that they are easy to culture, their presence can used to indicate that more pathogenic organisms of fecal origin may be present.

Escherichia coli

is common in the lower intestine of warm-blooded animals. Most species of *E. coli* are harmless. However, some strains can cause serious food poisoning in humans. Fecal-oral transmission is the most common route through which pathogenic organisms cause disease.

From qualitative to quantitative analysis

use of chromogenic media

Listeria chromogenic agar plate

Campylobacter chromogenic agar plate

but hazards often under the detection limit in commercial abattoir setting

Factors with an impact or causing bias on microbiological results

Intrinsic factors

1. metabolic state and bacterial strain heterogeneity Extrinsic factors

- 1. sampling method
- 2. analysis method
 - 1. culture depended
 - 1. quantitative
 - 2. qualitative
 - 2. culture independed

Lagier JC *et al.* Microbial culturomics: paradigm shift in the human gut microbiome Study. Clin Microbiol Infect 2012; 18: 1185–1193

Yu Z. *et al.* Food microbiology, 2019, V 82

CA18105 **RIBMINS**

Risk-based meat inspection and integrated meat safety assurance

Thank you for your attention

Kurt Houf

Faculty veterinary medicine Department of veterinary and biosciences

> Ghent University University of Antwerp

Funded by the 2020 Framework Programme of the European Union

www.cost.eu