Hazard-based thermal and chemical interventions for beef and pigs USA experience

Dr. Mick Bosilevac, PhD

United States Department of Agriculture – Agricultural Research Service

US Meat Animal Research Center, State Spur 18D

Clay Center, NE 68933

mick.bosilevac@usda.gov

+1 (402) 762-4225

Working Groups 2 and 3 Training school on farm and abattoir inter risk-based meat safety assurate system Virtual Event June 20-22, 2022.

Meat Safety and Quality Research Unit

Focus on control, prevention and detection of foodborne pathogens entering the meat chain

In Animals

Transport and During Processing

In Finished Products

Thermal and chemical interventions used for beef and pork processing

- Points where interventions are applied
- Types of interventions
 - Thermal
 - Chemical
- Validating/Monitoring interventions are effective
 - Measurements
 - What is meant by "effective"
- Practical examples
 - On-line examples
 - Laboratory examples
 - How to evaluate a published study before using it as a supporting docume

Beef and Pork Processing Flow Diagrams

Texas A&M University - Rosenthal Meat Science and Technology Center

Points to apply interventions to reduce contamination

Focus on harvest and processing steps that are most likely to contribute to carcass contamination

Pork Slaughter Systems Use a Multiple Hurdle Approach

SCALDING

- Skins scalded and dehaired
- Pre-Evisceration Carcass Treatment
- Final Carcass Cleansing
- Rapid Blast Chilling

"The hurdle approach involves combining several mitigating approaches, each of which is insufficient on its own, to control or even eliminate pathogens in food products." – Mogren et al 2018, Front Microbiol 9:1965

> DEH. (SINGEING

PREEVISCERATION WASH FINAL ASH/SPRAY

Beef Slaughter Systems Use a Multiple Hurdle Approach

• Hides

HIDE REMOVAL

HIDE WASH

Beef Slaughter Systems Use a Multiple Hurdle Approach

- Hides
- Pre-Evisceration Carcass Treatment
- Knife trimming

PRE-EVISCERATION

CARCASS WASH/SPRAY

HIDE
REMOVAL
KNIFE
TRIMMING

Treatment of Final Carcasses

- Evisceration and splitting can lead to contamination
- Final washes and interventions applied
- In some cases, treatments continue during chilling

Spray chill water or blast chill fogging applied to final carcass may contain an antimicrobial

Thermal and chemical interventions used for beef and pork processing

- Points where interventions are applied
- Types of interventions
 - Thermal
 - Chemical
- Validating/Monitoring interventions are effective
 - Measurements
 - What is meant by "effective"
- Practical examples
 - On-line examples
 - Laboratory examples
 - How to evaluate a published study before using it as a supporting docume

Anywhere contamination may occur should be immediately followed by a treatment to remove contaminants before they can adhere to the carcass

Common thermal and chemical interventions

- FSIS Directive 7120.1
 - Safe and Suitable Ingredients Used in the Production of Meat, Poultry, and Egg Products
- "Ingredient" versus a "Processing Aid"
 - Ingredients must be listed on product label, but not processing aids
 - Processing aids are:
 - Added during the processing of a food but removed in some manner from the food before it is packaged
 - Converted into constituents normally present in the food, and do not significantly increase the amount of the constituents naturally found in the food
 - Present in the finished food at insignificant levels and do not have any technical or functional effect in that food

Common thermal and

- FSIS Directive 7120.1
 - Safe and Suitable Ingredients Used Egg Products
- "Ingredient" versus a "Processin
 - Ingredients must be listed on proc
 - Processing aids are:
 - Added during the processing of a for before it is packaged
 - Converted into constituents normal increase the amount of the constituents
 - Present in the finished food at ins functional effect in that food

Common thermal and chemical interventions

- Thermal interventions
 - Steam
 - Hot water (~80C)
- Chemical interventions
 - Organic acids
 - lactic, acetic, peroxyacetic, and citric acids
 - Oxidizers
 - chlorine, bromine, acidified sodium chlorate, ozone
 - Quaternary ammonium compounds
 - cetylpyridinium chloride (CPC)
 - Alkali agents
 - trisodium phosphate, sodium hydroxide

Zhang et al. 2020. Comp Rev Food Sci Food Safety 19(4):2110-2138

What organisms do these interventions target?

- Pathogens
 - Escherichia coli
 - Salmonella Enteritidis
 - Listeria monocytogenes
 - Staphylococcus aureus
 - Bacillus cereus
 - Clostridium perfringens
 - Campylobacter jejuni
- Spoilage organisms

Thermal and chemical interventions used for beef and pork processing

- Points where interventions are applied
- Types of interventions
 - Thermal
 - Chemical
- Validating/Monitoring interventions are effective
 - Measurements
 - What is meant by "effective"
- Practical examples
 - On-line examples
 - Laboratory examples
 - How to evaluate a published study before using it as a supporting docume

What measures can be used to monitor an intervention or antimicrobial treatment

- Indicator bacteria
 - Aerobic Plate Count Bacteria (APC)
 - Enterobacteriaceae Counts (EBC)
 - Coliform Counts (CF)
 - E. coli Counts (ECC)
 - Concentration (CFU/cm²)
- Pathogens
 - E. coli and Salmonella
 - Prevalence (%)
 - Concentration (CFU/cm²)

- Measure online before and after intervention
- May be too low to measure at final carcass

- May be present on early carcasses
- Concentrations usually too low to measure
- Often used in inoculation studies to validate treatments

What measures can be used to monitor an intervention or antimicrobial treatment

- Online in processing plant
 - APC
 - EBC
 - E. coli /coliforms
 - Pathogen prevalence / concentration
- In lab running inoculation study
 - APC, EBC, EC, CF
 - Pathogens: STEC, Salmonella, Listeria
- The reduction in the concentration of bacteria after a treatment allows us to say how "effective" it is
 - >1 log₁₀ CFU reduction or killing 90% or more of bacteria

A proper sample must first be collected before and after the treatment to measure its effect

Sample collection online during processing

Boxed area represent location and area hide samples are collected.

Carcass sampling areas

Shaded areas represent where carcass sponge samples are collected

Alternately, three 100cm² areas (hock/round, midline, and shank/neck) may be collected

Larger sample areas provide greater organism recovery, to better measure prevalence or concentration

Thermal and chemical interventions used for beef and pork processing

- Points where interventions are applied
- Types of interventions
 - Thermal
 - Chemical
- Validating/Monitoring interventions are effective
 - Measurements
 - What is meant by "effective"
- Practical examples
 - On-line examples
 - Laboratory examples
 - How to evaluate a published study before using it as a supporting docume

Thermal and chemical interventions used during pork slaughter

- Scalding and dehairing
 - Before: skin at stunning
 - After: postscald at pre-evisceration
- Pre-Evisceration carcass treatment
- Final carcass wash and lactic acid spray
 - Final carcasses (Plant B used -30C blast chill)

TABLE 1 APC and EBC^a on pork carcasses by sample site, processing plant, and season

		APC count (log ₁₀ CFU/100 cm ²)			EBC cou	EBC count (log ₁₀ CFU/100 cm ²)		
Season ^{<i>b</i>}	Plant	Skin ^c	Postscald ^d	Final ^e	Skin	Postscald	Final	
	Α	6.50b	3.91a	2.48a	4.41a	2.28a	0.88a	
	В	6.93a	3.53b	2.22b	4.37a	1.50b	0.49b	
Winter		6.27y	3.28x	1.92y	4.06y	1.66y	0.49y	
Spring		6.79x	2.85z	1.80y	4.51x	1.85x	0.51y	
Summer		7.85w	5.59w	3.15w	5.01w	2.56w	1.02w	
Fall		5.95z	3.05y	2.53x	3.99z	1.77xy	0.73x	

 Concentrations of indicator organisms (APC and EBC) at each point

Thermal and chemical interventions used during pork slaughter

- Scalding and dehairing
 - Before: skin at stunning
 - After: postscald at pre-evisceration
- Pre-Evisceration carcass treatment
- Final carcass wash and lactic acid spray
 - Final carcasses (Plant B used -30C blast chill)

- Concentrations of indicator organisms (APC and EBC) at each point
- Prevalence of *E. coli* (Shiga toxin E. coli; STEC) detected at each point

N.

TABLE 2 Prevalence^{*a,i*} of STEC^{*b*} and EHEC^{*c*} in samples collected from pork processing as determined by PCR^{*d*}

	No. of		% of STEC-positive samples			% of EHEC-positive samples		mples
Season ^e	Plant	samples	Skin ^f	Postscald ^g	Final ^{<i>h</i>}	Skin	Postscald	Final
All		1,536	85.3	17.5	5.4	ta Addamini Addina a ana an		and the second sec
	Α	768	81.3y	13.8y	8.2x			
W	В	768	89.3x	21.2x	2.6y			
Sr Winter		384	41.7r	20.3q	3.6qr			
Spring		384	100.0q	11.2r	3.4r			
Summer		384	99.5q	19.0q	7.6q			
Fall		384	100.0q	19.5q	7.0qr		-	-

Thermal and chemical interventions used during beef slaughter

Lactic acid and hot water wash treatments of pre-evisceration beef carcasses

Log ₁₀ APC/100cm ²	Lactic Acid (n = 256)	Hot Water (n = 256)	Sequential (n = 256)
Before Treatment	6.1	6.2	6.4
After Treatment	4.5	3.5	4.2
Reduction	1.6	2.7	2.2
P value	0.001	0.001	0.001

Thermal and chemical interventions used during beef slaughter

Lactic acid and hot water wash treatments of pre-evisceration beef carcasses

Percent (%) Prevalence of <i>E. coli</i> O157:H7	Lactic Acid (n = 256)	Hot Water (n = 256)	Sequential (n = 256)
Before Treatment	31%	27%	19%
After Treatment	20%	5%	4%
Reduction	35%	81%	79%
<i>P</i> value	0.01	0.001	0.001

- Examples of sample collection that may impact chemical intervention measurements
 - Location on the carcass sampled
 - The type of sponge or swab used to collect the sample
 - Buffers used to neutralize chemical interventions
- Online beef carcass results

- Locations on a carcass
 - Top: inside and outside round
 - Bottom: navel-platebrisket-foreshank
 - Beef carcasses before and after a pre-evisceration wash and peroxyacetic acid (PAA) or lactic acid sprays.
 - Measure APC, EBC, Coliforms, and *E. coli*

Mean log₁₀ CFU/100 cm² of indicator bacteria by sample site

		•		
Comple	APC	EBC	Coliforms	E. coli
Sample	Pre – intervention			
Тор	5.9 в	2.2 в	2.0 A	1.8 AB
Bottom	6.1 в	1.7 c	1.8 АВ	1.7 в
Combined	6.4 A	2.9 A	2.1 A	1.9 A

	Post – intervention							
Тор	5.3 c	5.3 с 1.3 ср 1.6 вс 1.4 с						
Bottom	4.3 D	-0.8 e	0.2 D	- 0.3 D				
Combined	5.3 c	1.1 D	1.6 c	1.3 c				

	Reduction				
Тор	0.6	0.9	0.4	0.4	
Bottom	1.8	2.5	1.6	2.5	
Combined	1.1	1.8	0.5	ס. אין אין	

- Sponges and swabs
 - Beef carcasses after a pre-evisceration wash and peroxyacetic acid (PAA) spray
 - Measure APC collected from 2,000 cm² along brisket/midline
 - Cellulose sponges (CELL)
 - Cellulose sponges on a handle (a.k.a.: sponge on stick; SS)
 - Polyurethane sponges on a handle (PUR)

APC PAA pre-evisc carcasses

- Neutralization Buffers
 - Beef carcasses after a pre-evisceration wash and peroxyacetic acid (PAA) spray
 - Measure APC collected from 2,000 cm² along brisket/midline
 - Buffered Peptone Water (BPW)
 - Dey-Engley Neutralizing Broth (DE)
 - High Capacity Neutralizing Broth (HiCap[™])
 - Letheen Broth (Leth)
 - Difco[™] Neutralizing Buffer (NB)

- Neutralization Buffers
 - Finished beef carcasses entering cooler after a hot water wash and lactic acid (LA) spray
 - Measure APC collected from 2,000 cm² along brisket/midline
 - Buffered Peptone Water (BPW)
 - Dey-Engley Neutralizing Broth (DE)
 - High Capacity Neutralizing Broth (HiCap[™])
 - Letheen Broth (Leth)
 - Difco[™] Neutralizing Buffer (NB)

o col

- Examples of sample collection that may be the chemical interview of the chemical interview of
 - Location ne / rc.
 - The type
 - Buffers use
 n
 ize chermical interation
- Online beef carcass results
 - Locations on a carcass are not equally contaminated
 - Sponges are not all the same
 - Buffers are not all the same
- As long as a consistent sampling plan using like materials is maintained, then results can be compared over time to monitor interventions are remaining effective

Carcass surface inoculation studies allow best estimate of on-line efficacy of an intervention

Pooled strains diluted in beef purge provide simultaneous measurement of STEC groups, Salmonella serovars, Listeria species, and indicator organisms.

	Log ₁₀ Reduction				
Treatment	0157	Sal	APC	EBC	
ASC	1.0	1.6	1.1	1.1	
ΡΑΑ	1.5	0.9	1.1	-	
BR	1.0	0.8	0.8	0.8	
FX	1.4	1.7	1.4	1.6	
LA	2.3	2.6	1.4	-	
HW	4.0	4.3	2.9	_	

ASC = acidified sodium chlorite; PAA = peroxyacetic acid; BR = bromine; FX = FreshFx ; LA = lactic acid ; HW = hot water

Treatment conditions

- 15-20 psi for 15 sec
- Hot water; 85°C at nozzles
- Lactic acid; 4%, pH = 2.3
- Peroxyacetic acid; 200 ppm, pH = 2.8 (Inspexx[™])
- Bromine compounds; 300ppm (Bromitize[™], H2B[™])
- Acidified sodium chlorite; 1000 ppm, pH =2.4 (Sanova[™])
- Citric/phosphoric/hydrochloric acid blend;
 2% pH = 1.7 (FreshFX[™])

Treatment conditions

- 15-20 nsi for 15 sec.
 - It is essential that before relying on a
 - published report to support your use of a
- L thermal or chemical intervention, you
- P ensure the reported parameters match xx[™])

H2B™)

- E how you will be applying it. If not, you
 - should perform your own validation study to show efficacy
- Citric/phosphoric/hydrochloric acid blend;
 2% pH = 1.7 (FreshFX[™])

Thermal and chemical interventions used for beef and pork processing

- Points where interventions are applied
- Types of interventions
 - Thermal
 - Chemical
- Validating/Monitoring interventions are effective
 - Measurements
 - What is meant by "effective"
- Practical examples
 - On-line examples
 - Laboratory examples
 - How to evaluate a published study before using it as a supporting docume

U.S. Most Animal Research Con Aprinted Inserts breiss USDA U.S. Burrissi of Aprinters experting sith To bioredly of Internals

Questions?