

Funded by the 2020 Framework Programme of the European Union

www.cost.eu

Management of Shiga toxin-producing *Escherichia coli* (STEC) in cattle in the European Union

Silvia Bonardi^{*}, Simone Belluco, Maria Fredriksson-Ahomaa, Ivar Vågsholm **3rd RIBMINS Conference**, Bucharest 29-30th March 2023 * presenting person

Shiga toxin-producing *Escherichia coli* (STEC) in the EU, 2021

Shiga toxin-producing E. coli (STEC)

- STEC belong to diarrhoeagenic E. coli
- Shiga toxins (Stxs) are the major virulence factor of STEC
- Two main groups
 Stx1 four subtypes (a,c,d and e)
 Stx2 12 subtypes (a to l)
- Stxs bind to Gb3 receptors on the endothelial cells of target organs (kidneys, brain)

(Gardette et al., 2019; EFSA, 2020)

«Shaping the future of RB-MSAS»

STEC virulence

- Low infectious dose (< 100 CFU)
- Attachment to the large intestine enterocytes

LEE-STEC: expression of the LEE genes (*eae*, *tir, esp*) formation of **attaching and effacing (A/E) lesions**

non-LEE STEC: alternative mechanisms

- Once attached STEC must multiply
- At this stage, STEC may produce Stxs

(Lee et al., 2021)

Clinical outcomes in humans

- Asymptomatic carriage
- Non-bloody diarrhoea
- Haemorragic colitis

«all blood and no stool»

- Haemolytic uraemic syndrome (HUS) especially in children < 5 y
- HUS is the leading cause of pediatric acute renal failure in the EU

DI PARM

The top serogroups

- STEC belong to hundreds of serotypes
- Top five serogroups tested in food and animal samples: 0157, 026, 0103, 0111, 0145 (plus 0104:H4 for sprouts)
- ISO/TS 13136:2012
- In 2017, they accounted only for 10.7% of the STEC isolated from food in 23 MSs

(EFSA, 2020)

STEC serogroups in HUS cases in the EU

(EFSA and ECDC, 2022)

STEC, but not only

- **STEC** Shiga toxin-producing EC
- **EPEC** Enteropathogenic EC
- **ETEC** Enterotoxigenic EC
- **EAEC** Enteroaggregative EC
- **EIEC** Enteroinvasive EC
- **DAEC** Diffusely Adherent EC
- **AIEC** Adherent Invasive EC

Cross-pathotype strains

Strains harbouring pathogenicity genes associated with more than one pathotype

EAEC – STEC O104:H4

Once an *E. coli* carries the *stx* gene it may be considered a STEC

(EFSA, 2020)

The cross-pathotype O80:H2

- Highly virulent pathotype (HUS + bacteriemia)
- ExPEC-STEC O80:H2
- Stx2 genes (*stx2a, stx2c, stx2d,* or *st2f*)
- intimin gene eae-ξ
- extraintestinal virulence genes (*sitA, cia, hylF, ompTP, iss, iroN*)
- Detected in **calves** in Belgium (Thiry et al., 2017)
- Not reported from food in the EU (2017-2021)

Other cross-pathotype serotypes

- ETEC-STEC
- stx1 and/or stx2 genes

1% (human STEC) 14% (animal and environmental STEC)

• ETEC heat-stable (ST) enterotoxin Ia gene (estla)

The animal reservoirs

- Cattle are the main reservoirs of STEC worldwide
- STEC colonize the gut mucosa and the recto-anal junction (RAJ)
- Prolonged shedding
- Asymptomatic infections
- Gb3 expressed by peripheral and intestinal lymphocytes
- Stxs act as immunosuppressive virulence factors in cattle, explaining both the lack of clinical symptoms and the persistent character of the infection

(Menge, 2020)

Source attribution studies

• European subregion-A (very low child and adult mortality)

STEC contamination

(Hoffmann et al. 2017)

STEC food safety criterion (Regulation EC 2073/2005)

Food category	Micro-organisms/their toxins, metabolites	Sampling plan (1)		Limits (2)		Analytical reference	Stage where the criterion applies
		n	с	m	М	method (2)	and and an antion offices
1.29 Sprouts (²³)	Shiga toxin producing E. coli (STEC) 0157, 026, 0111, 0103, 0145 and 0104:H4	5	0	▶ <u>M9</u> Not o 25 g	detected ◀ in grams	CEN/ISO TS 13136 (22)	Products placed on the market during their shelf-life

Occurrence of STEC in sprouts in the EU						
	2021	2017-2020				
No sampling units	617	1,730				
No positive units (%)	1 (0.16)	0				

Monitoring on STEC in other foods

 Reporting obligations of MSs under Directive 2003/99/EC, which indicates that the presence of STEC should be investigated at <u>the</u> <u>most appropriate stage of the food chain</u>

Occurrence of STEC in fresh bovine meat in the EU						
	2021	2017-2020				
No sampling units	5,095	21,017				
No positive units (%)	288 (5.7)	514 (2.4)				

HEIs for STEC in bovine animals (EFSA, 2013)

* Results must be included in FCI

Processing control strategies for STEC in beef

Processing stages mainly include:

- 1. Animals receiving and lairage
- 2. Slaughter
- 3. Carcass pre-chilling

(FAO and WHO, 2021)

Interventions at lairage

- Proper lairage pen and working facilities hygiene
- Reducing time spent at lairage
- Hide decontamination, if needed

Categorization and management of cattle prior to slaughter

1 – 2: clean animalsNo actions at the abattoir

3: **moderately dirty** animals GHP at the abattoir No actions on farm

Categorization and management of cattle prior to slaughter

4: dirty animals Interventions and GHP at the abattoir * Actions on farm

5: dirty and mould animals Interventions and GHP at the abattoir * Actions on farm

- Holding cattle for a period of time on straw in lairage
 - Hide decontamination
 - Changing logistics in slaughter
 - Clipping hide after kill (before hide removal)
 - Slowing the slaughter line speed

Hide decontamination

Before stunning

- Live animal hide washes
- ✓ water
- ✓ ozonated or electrolyzed water
- \checkmark water with the addition of chemicals

(Bosilevac et al., 2005)

 Bacteriophage treatment specific for STEC 0157:H7
 (Arthur et al., 2017)

Hide decontamination

After stunning

- Washing
- ✓ pressure hoses for 3'
- ✓ ozonated water
- ✓ chlorinated water
- ✓ electrolyzed-oxidized (EO) water
- ✓ sodium hydroxide
- ✓ lactic acid
- Hide clipping, hide coating, chemical dehairing

Slaughter and dressing

- Reducing processing speed
- Increasing distance between carcasses
- Good practices in hide removal
- Sealing off the rectum and the oesophagus
- Removing of faecal material from carcasses
- ✓ Trimming
- ✓ Steam vacuuming (82-95°C)

Carcass pre-chilling

- Hot water wash * (> 85°C for at least 10")
- Steam pasteurization * (> 85°C for at least 13")
 (Bosilevac, 2019)
- Lactic acid * Regulation (EU) No 101/2013
- ✓ spraying 3 % LA solution in potable water at 55 °C (Signorini et al., 2018)

* may result in carcass discolouration, which generally disappears after 24 h of chilling

Degree of support for the *specific* control of STEC in raw beef (FAO and WHO, 2022)

UNIVERSITÀ

STEC control programmes in the EU

- Only a few countries have implemented national control programmes for STEC in the beef chain
- In Sweden and Finland, they are based on two components:
- 1) traceback from human cases
- 2) monitoring at abattoirs (FBOp own-checks)

STEC control in Sweden

PASSIVE

Traceback from human cases

 Association between a human case of STEC infection and animal farms

trace back investigation on farm

(faeces, environmental swabs)

ACTIVE Monitoring at abattoirs

- Survey in cattle:
- ✓ annually between 1997-2002✓ then every third year
- The last survey: 2020-2021
- Prevalence in faecal samples: STEC 0157 : 2.8% STEC 026 : 0.7% STEC 0103: 0.3%

STEC control in Finland

PASSIVE

Traceback from human cases

 Association between a human case of STEC infection and animal farms

trace back investigation on farm

(faeces, environmental swabs)

STEC control in Finland

ACTIVE – Monitoring at abattoirs

- 2004-2021
- EHEC control programme
- STEC O157 and non-O157 that cause human illness
- Faecal samples
- ISO 16654 and NMKL 164

Official sampling on farm

Logistic slaughtering

Heat treatment of carcasses

- 2021-
- STEC monitoring programme
- Carcass swabs
- At least 500 swabs/year (>100 heads y)
- ISO/TS 13136

Positive samples

Improvement of slaughter hygiene Review of process control

Official controls

- STEC in faecal samples from cattle
- At least every 5 years

How to go further?

- Amending Regulation (EC) No 2073/2005
- Process Hygiene Criterium for STEC in bovine (and other ruminants') carcasses
- ✓ Top five serogroups: not sufficient, but better than nothing

Conclusions

- Complexity of STEC
- Plasticity of genome
- Cattle as asymptomatic reservoirs
- No food safety criteria in food at risk
- No control programmes in most EU countries
- STEC-risk only to be managed by FBOp at abattoirs
-and mandatory training for vets!

Thank you for your attention

silvia.bonardi@unipr.it

C Funded by the 2020 Framework Programme of the European Union

www.cost.eu