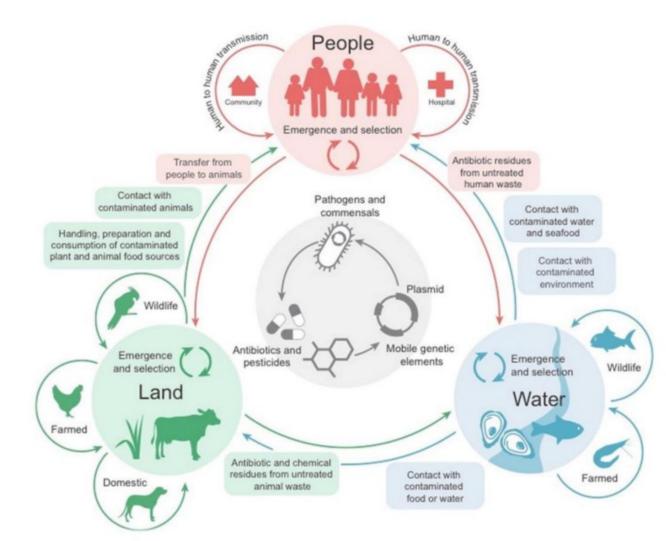


ESBL E. coli in pigs

Alexandra Fetsch, Emma Bergenkvist, Irene Esteban Cuesta & Moniek Ringenier

www.cost.eu


Hazard overview: ESBL E. coli

- Public health issue
- AMR One Health Challenge
- ESBLs = plasmid encoded enzymes
- transferable resistance against beta-lactam antibiotics incl. 2nd/3rd/4th generation cephalosporins
- Frequently found in Enterobacteriaceae, mainly in *E. coli*
- Varying prevalence depending on
 - animal species/countries/production stage
- Role of food chain in human cases is still unknown

One Health perspective

Urgent need to reduce reservoirs to avoid transfer of genes to (non-foodborne) pathogens

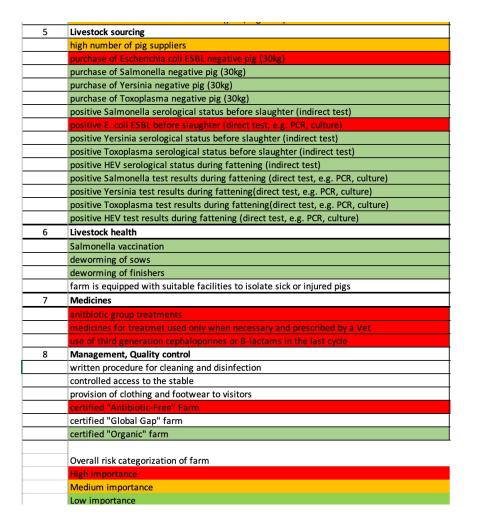
Various risk factors:

- Farm
- Post-Harvest
- Food handling

What to do to reduce the public health risk ?

Main goals: Reduction of

- occurence
- emergence
- spread
- of ESBL producing bacteria


Possible control options:

- 1. Selection of resistant bacteria/antimicrobial determinants due to usage of antimicrobials
- 2. Dissemination occurs within the gut of animals, by cross-contamination with faecal material between animals

Highly contributing risk factors at farm level

1	Farm type		
	farrow-to-finishing herds		
	finishing herds		
	All-In-All-Out		
	farm located in higly urbanized areas		
2	Livestock housing and facilities		
	solid floor		
	slatted floor		
	access to slurry and manure		
	indoor holding with possibility to have access to outdoor		
	permanent outdoor holding (free-range farm)		
	straw bedding		
	field rotation for outdoor holdings		
3	Livestock feed and water		
	heat treatment of feed		
	commercial feed		
	use of municipality water for drinking the animals		
	microbiological safe water		
	protein elements of the diet only obtained from vegetables		
	sanitation system for lorries entering the farm		
4	Pest control		
	pest control system in place		
	bird control		
	contact with other animals than birds (wildlife)		

Highly contributing risk factors

- Positive E. coli ESBL before slaughter
- Antibiotic group treatments
- Use of third generation cephalosporines and B-lactams in the last cycle
- Medicines for treatment used only when necessary and prescribed by a vet
- Finishing herds
- All-in all-out
- Access to slurry and manure
- Purchase of *E. coli* ESBL negative pigs
- Certified "Antibiotic-Free" farm

Categorisation of 4 farms

- 4 farms categorised by applying farm categorisation template
- Systematic approach of categorisation correlated with `gut feeling'

Farm Number	Risk categorisation
Α	Low risk
В	High risk
C	Medium risk
D	Medium-high risk

Risk factors at abattoir level

- Preselection of herds before slaughter
- Logistic slaughter
- Good Hygiene Practices
- HACCP
- Carcass interventions at slaughter
- Microbiological testing & follow-up
- Inform & follow-up with farms

Risk categorisation abattoirs

Abattoir number	FSMS performance score	Risk-based
1	13,88 (69,4%) – high	2,08 (low)
2	4,96 (24,8%) - low	80,6 (high)
3	8,89 (44,5%) – medium	58,3 (medium)

Which farms to where?

- First gut feeling as a consumer: low risk farm to low risk abattoir
- BUT how do you manage the risk? Where do you send the high risk animals?
- Do you want to introduce the risk to a low risk abattoir?
- As risk manager (governmental perspective): send high risk animals to low risk abattoir
 - You have to give economical incentives to low risk abattoir for processing high risk animals: e.g. cheaper price for these animals (for the abattoir) or visible labels for consumers (quality label of abattoir)
 - Look at the intention of the meat in the abattoir: do they produce meat for raw consumption?

Sum up

- There is no simple solution/clear answer (no wright/wrong)
- The perspective matters
 - The Policymaker
 - The Competent Authority (CA)
 - The Food Business Operator (FBO)
 - The Quality Manager of a company
 - The Consumer
- Rarely any legal basis but decisions mainly economically driven
- Due to the complexity of the problem:
- Consideration of several (other) aspects needed (amongst food safety):
 - Animal welfare
 - Increasing consumer awareness
 - ...,

Important points of action

- Reduce AMU on farm level: specifically cephalosporins
- Improving hygiene level on abattoir level

