

New application possibilities in the diagnostic methods Multiserology via microarray

Diana Meemken¹, Sebastian Hahne², Anna Tangemann², Sylvia Mitrenga², Katharina Loreck², Janine Dzierzon¹, Matthias Greiner², Günther Klein², Thomas Blaha²

¹Freie Universität Berlin, Institute for Food Hygiene and Food Safety, Working Group Meat Hygiene ²University of Veterinary Medicine Hannover, Germany

Intermediate Goal

3rd: multiserology via ArrayTube 4th: multiserology via ArrayStrip

2nd: meaningfulness of seroprofiles

1st: comparability meat juice vs. serum

The need

The need

Still high number of zoonotic diseases in humans

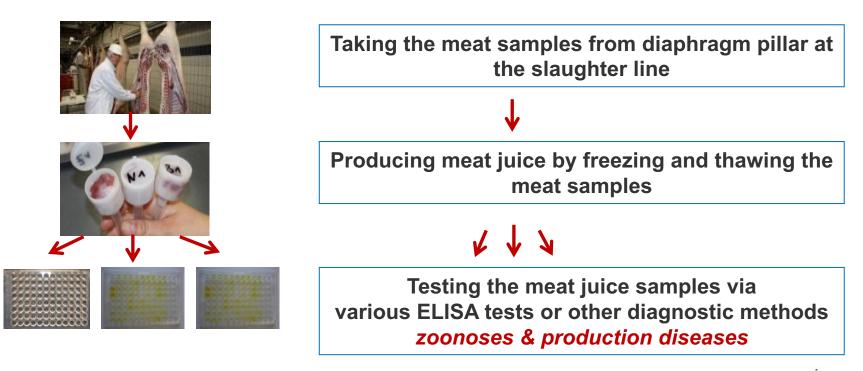
- zoonotic pathogens of inapparent infections like *Salmonella*, *Toxoplasma* or Hepatitis E stay undetected and uncontrolled during traditional and visual meat inspection

Societal demand for animal health and animal welfare

 evaluation of pathological lesions at slaughter is often **not** standardized, which can lead to vets and farmers **not** taking post mortem findings into account

Need for (cost-effective) diagnostics regarding zoonoses and production diseases

• 3 equal aims of the European food safety strategy (Reg. (EC) No 178/2002)


- demand for monitoring programmes to identify zoonotic pathogens in pig herds [Reg. (EU) No. 853/2004]
- ranking of zoonotic hazards which should be monitored in pigs:
 1. Salmonella, 2. Trichinella, 3. Yersinia, 4. Toxoplasma
 [EFSA's scientific opinion (2011)]
- demand for evaluating animal health and human health risks [Reg. (EU) No. 219/2014]
- "serological Salmonella Monitoring Programme" for pig herds in Germany ["German Regulation for Salmonella in pigs" (2007)]

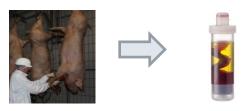
Principle of the "Meat Juice Multi-Serology"

(Meemken and Blaha, J Food Safety and Food Quality, 2011)

Testing meat juice samples ($n \ge 60$ / herd) for antibodies against various pathogens for creating serological herd profiles

Serum & meat juice as sample for multiserology

Collection of blood samples in the herds


- \rightarrow stress, pain, risk of infection
- \rightarrow bleeding is veterinarian work only
- \rightarrow additional manpower needed

Freie Universität

Collection of blood samples or diaphragm pillar muscle in the abattoirs

- ightarrow no risks for animal health, lower costs, no stress or pain for the animals
- \rightarrow well-established working process due of the implemented Salmonella programme
- ightarrow no additional manpower needed

Berlin

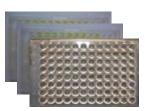
1st step: comparability of serological results meat juice vs. serum

M&M: - comparative ELISA analysis of 291 pairs of samples (serum & meat juice) - commercial ELISA tests for zoonoses and production diseases with (zoonoses) and without (production diseases) registrations for meat juice

	meat juice vs. serum (n=291)		
	Kappa	sensitivity	specificity
Salmonella spp.	0.87	87%	99%
Yersinia enterocolitica	0.93	100%	91%
Toxoplasma gondii	n.c.	100%	100%
Trichinella spp.	n.c.	100%	100%
Mycoplasma hyopneumoniae	0.86	91%	96%
Influenza A (H1N1)	0.66	61%	99%
Influenza A (H3N2)	0.65	55%	99%

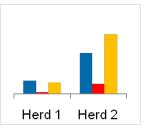
- > tenfold lower dilution of meat juice than of blood serum
- meat juice and serum are comparable specimens for ELISA test

2nd step: meaningfulness of multiserological results → meat juice multiserology (Meemken et al., Prev. Vet. Med, 2014)



sampling

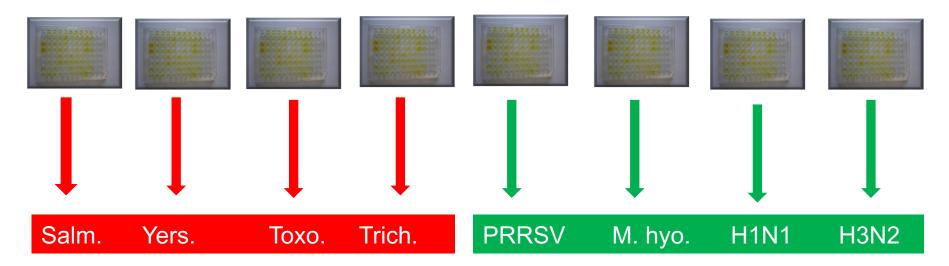
• taking muscle samples from 47 herds in the Northwest of Germany


Berlin

• 47 herds x 60 samples= 2.820 meat juice samples

antibody testing

- 4 zoonotic diseases: Salmonella, Yersinia, Toxoplasma, Trichinella
- 4 production diseases: PRRSV, M. hyo., H1N1, H3N2



creating herd seroprofiles

- used by farmers and vets for continuous improvements in the herds
- used by official vets and food business operators for risk assessments

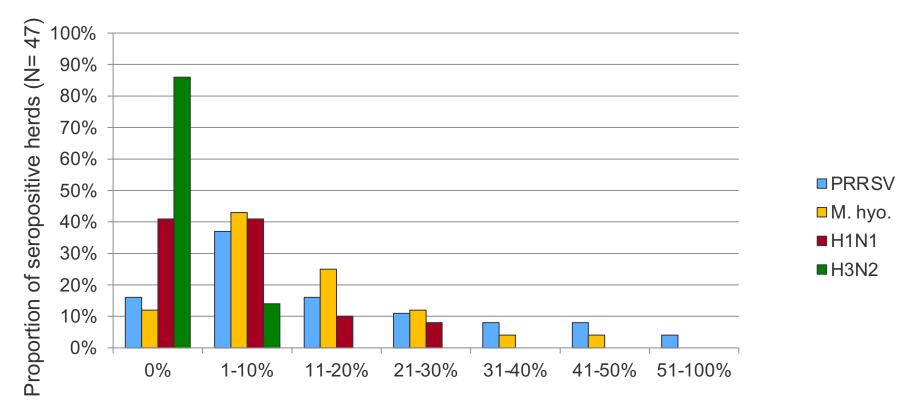
Serological herd profiles via sequential single-ELISA tests

2.820 samples x 8 single-ELISA tests = 22.560 results

Geographic position of the selected 47 herds in Nothwest Germany

Freie Universität

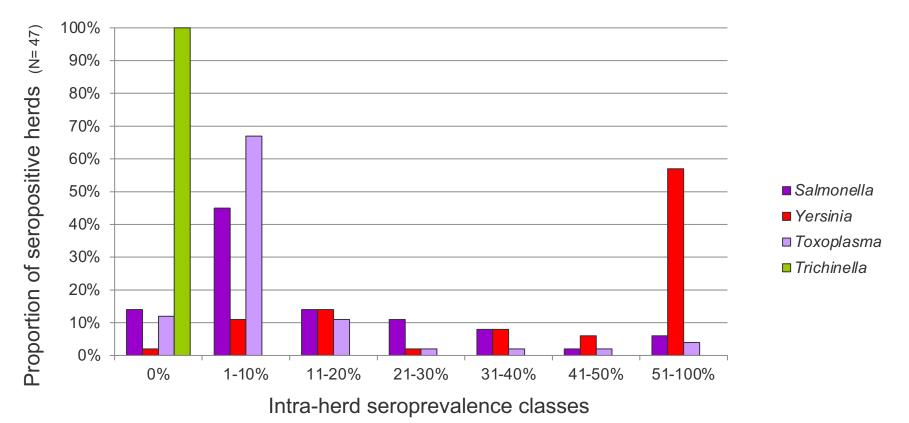
🖗 Berlin



- herd size >1000 slaughter pigs/year
- sampling of all herds in early spring 2011 from 3 slaughter batches each

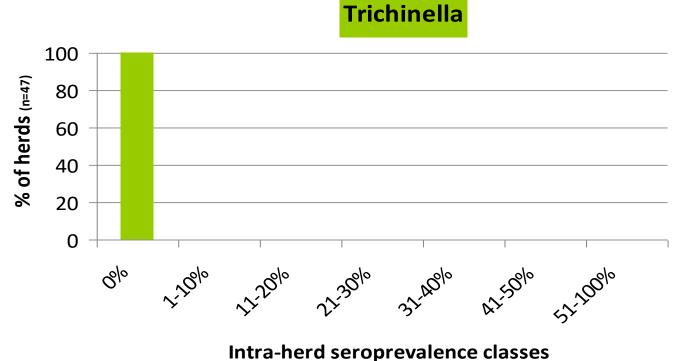
Results: production diseases

Seroprevalence per herd per seroprevalence class



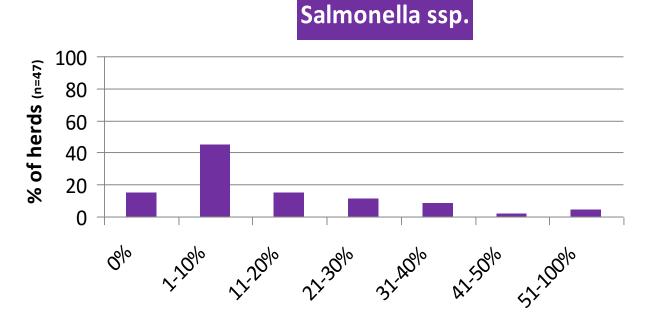
Intra-herd seroprevalence classes

Results: Zoonoses


Seroprevalence per herd per seroprevalence class

Results: zoonoses

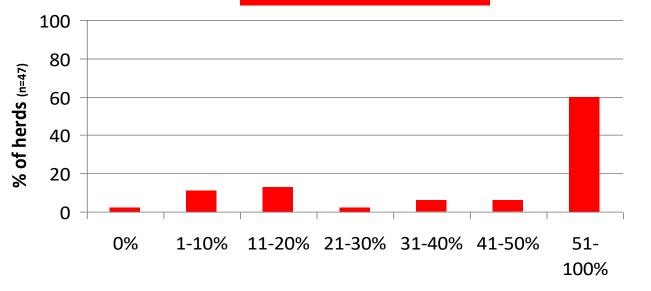
Classifying herds into seroprevalence classes



Fachbereich Veterinärmedizin der Freien Universität Berlin INSTITUT FÜR LEBENSMITTELSICHERHEIT UND -HYGIENE

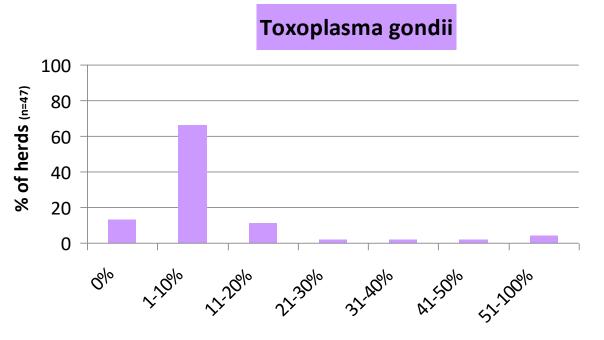
Classifying herds into seroprevalence classes

Intra-herd seroprevalence classes



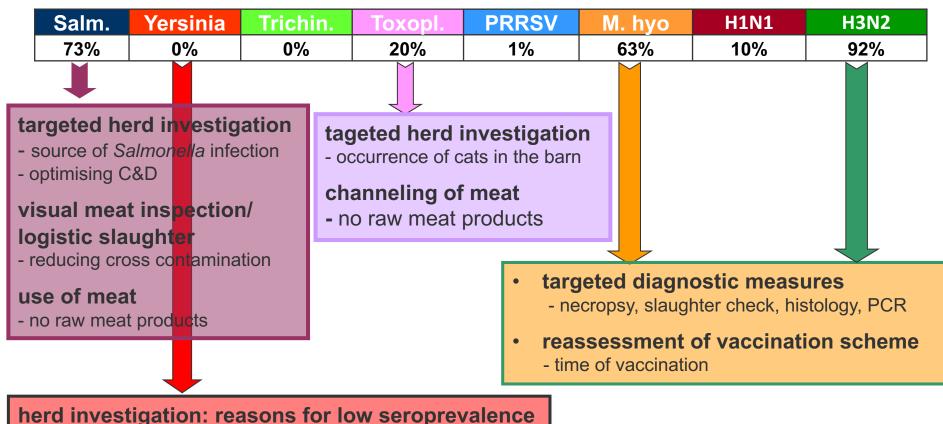
Results: zoonoses

Classifying herds into seroprevalence classes



Intra-herd seroprevalence classes

Classifying herds into seroprevalence classes



Intra-herd seroprevalence classes

Meaningfulness of serological herd profiles

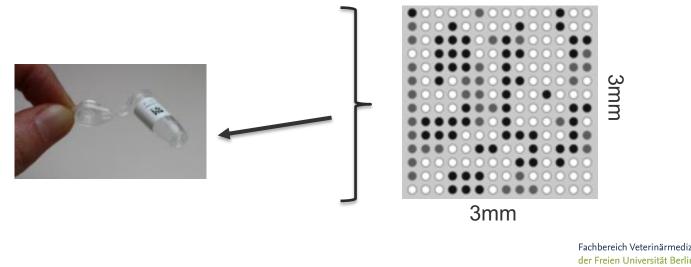
- implementation of these good measures in other herds

serological herd profiles:

- vary remarkably between herds even in the same region
- **show infections** with production diseases independently from the vaccination status (if vaccinated within first 2 months of life)
- help with vaccination decisions
- discriminates between low and high risk farms regarding meat safety hazards
- increase the informative value of the food chain information
- can be used for continuous improvement measures

next steps:

development and validation of (cost-effective) **simultaneous test systems** for production diseases and zoonoses (microarray, bead technology, lateral flow...)

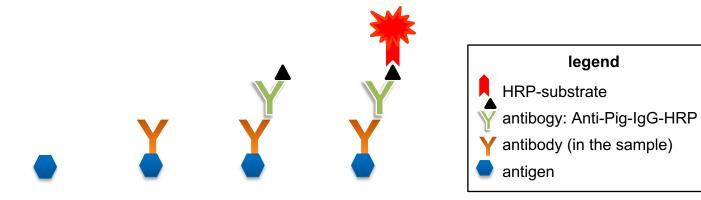

3rd: development of multiserology via microarray

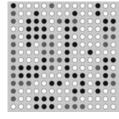
→ microrray in ArrayTube format (Hahne, 2014)

microarray:

- a laboratory tool used to analyze large numbers of antibodies at one time
- antigens are placed in a pattern onto a glass slide (3x3mm) to detect antibodies

Test principle of protein microrrays



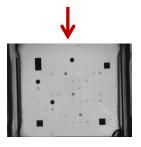

microarray in ArrayTube format:

- microarray chip (= glass slide) at the bottom of an Eppendorf cup (= reaction vessel)
- substances are added to detect the antibodies in the meat juice or serum
- manual processing neccessary

test principle:

- same principle and conjugats as for ELISA tests
- the darker the spot, the more antibodies in the sample

Development of a swine-specific protein microarray Freie Universität for simultaneaously testing production diseases and zoonoses


acquiring antigens from ELISA test producers (QIAGEN, Alere)

Berlin

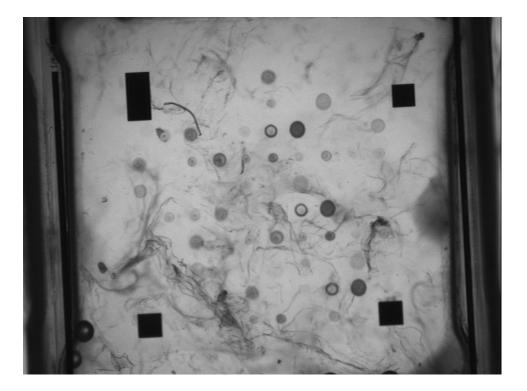
- **1**st **step** testing the feasibility of meat juice and serum as specimen
 - developing a useful testing procedure

2nd step • comparing the results of the microarray with single-ELISA results using the same samples

- 3rd step statistical analysis of the results
 - finding the optimal sensitivity and specificity for the new test

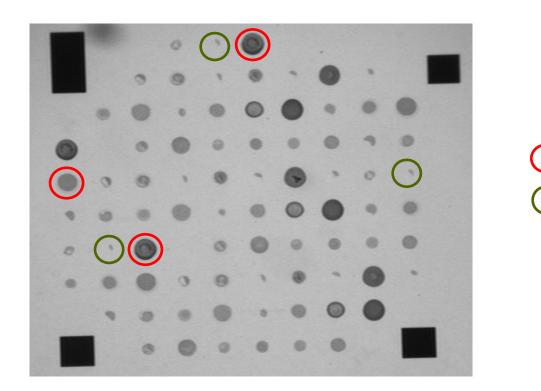
Freie Universität

The swine-specific protein microarray

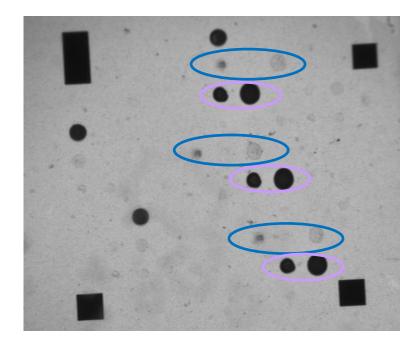

designing a "swine-specific protein microarray" assisted by QIAGEN and Alere

Spotting recombinant or native antigens on the microarray chip:

Salmonella spp. Toxoplasma gondii Trichinella spiralis zoononic agents Yersinia enterocolitica Hepatitis E virus Swine Influenza Virus Mycoplasma hyopeumoniae production disease agents PRRSV Actinobacillus pleuropneumoniae

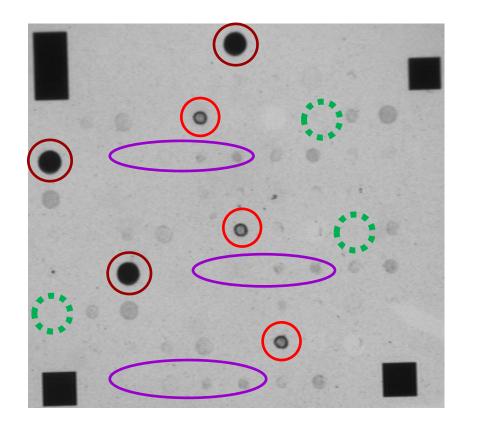

Results **P**I

clouds caused by using wrong washing solution

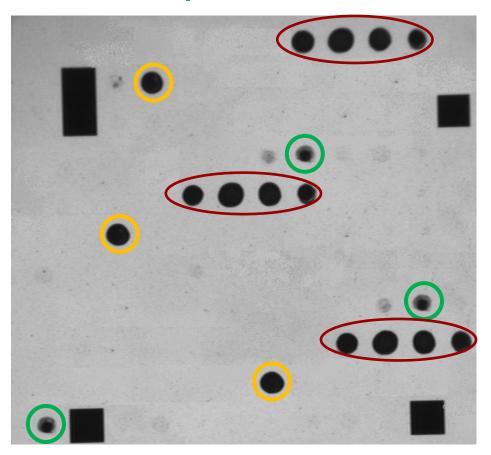


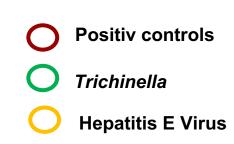
positive controlsnegativ controls

unspecific bindings caused by using the wrong conjugate


Seropositive meat juice for **Toxoplasma** and **PRRSV**

Seropositive meat juice field sample for Yersinia enterocolitica & S. Typhimurium

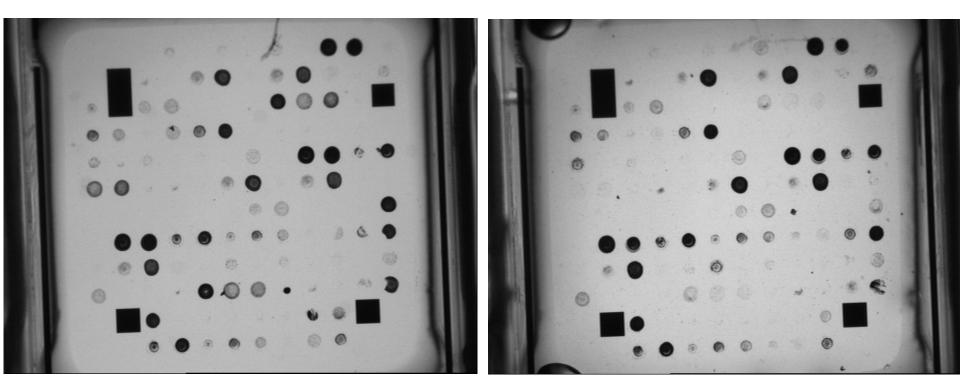




 positivs controls
 Yersinia enterocolitica
 Salmonella Typhimurium
 no antibodies against Trichinella

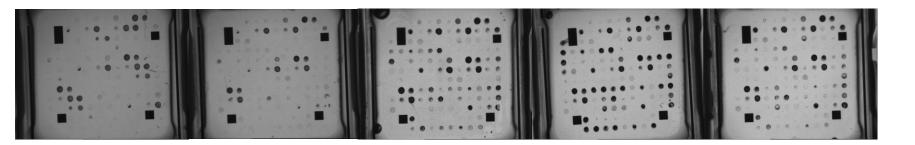
Fachbereich Veterinärmedizin der Freien Universität Berlin INSTITUT FÜR LEBENSMITTELSICHERHEIT UND -HYGIENE

Seropositive meat juice from reference labor for *Trichinella spiralis* (Prof. Dr. Nöckler, BfR)


Freie Universität

Berlin

Comparable results

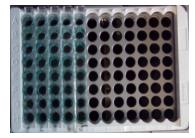

meat juice (dilution: 1:2)

blood serum (dilution 1:20)

Conclusion

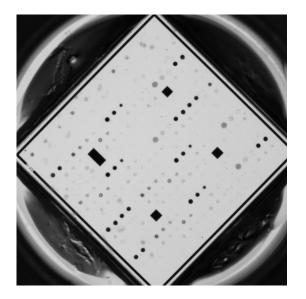
- meat juice and blood serum are equally suitable specimens
- only a small amount of antigen is needed (= lower cost)
- test duration is comparable to ELISA tests (1:45h)
- possibility to test up to 100 different pathogens via microarray
- approach is in line with the requirements of the EU Food Safety Strategy

4th: development of automated multiserology → microarray strip format (Loreck et al. 2019, 2020)

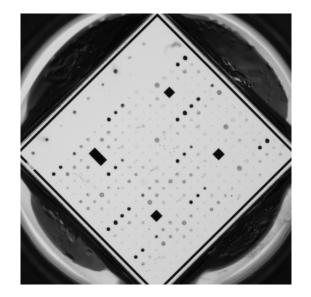


ArrayTube format

ArrayStrip Format

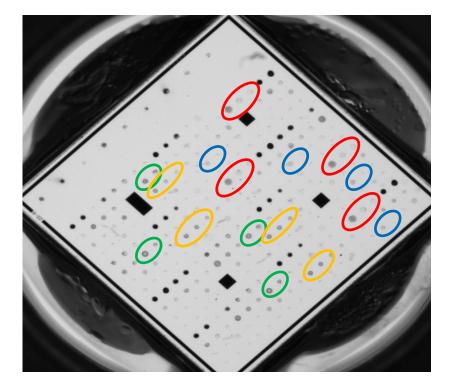


Berlin


Multiserologie via Microarray

Comparing a paired sample (meat juice and serum from the same animal

meat juice



blood serum

Multiserologie via Microarray

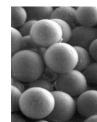
Mycoplasma hyopneumoniae

Toxoplasma gondii

Salmonella

PRRS-Virus

Intermediate goal


successful development of multiserology

- for production diseases & zoonoses
- with serum & meat juice as specimen
- via ArrayTube format & automated ArrayStrip format
- up to 10 serological results for approx. 5€ (order volume of 1 milion arrrays)

potential next steps:

- development of multiserology via lateral flow or bead technology"
 - more flexible, cheaper and currently available diagnostics

Thank you for your attention!

Special thanks to our funders

2nd step Ministry for Climate Protection, Environment, Agriculture, Nature Conservation and Consumer Protection of the State of North Rhine-Westphalia

3nd step "Federal Ministry of Food, Agriculture and Consumer Protection on the basis of a Resolution of the German Bundestag"

" Federal Office for Agriculture and Food (BLE), Grant no. 28011HS013"

Publications along the path of development

Meemken, D, Blaha T (2011): "Meat Juice Multi-Serology" – A tool for the continuous improvement of herd health and food safety in the framework of the risk-based meat inspection of slaughter pigs, J Food Safety and Food Quality

Nobmann JA, Blaha T, Beyerbach M, Kreienbrock L, Meemken D. (2011): [Comparing the results of the serological detection of Salmonella antibodies in blood serum and meat juice from different muscles from slaughter pigs]. Berl Munch Tierarztl Wochenschr. 2011 Jul-Aug;124(7-8):313-9. German. PMID: 21848039.

Hahne, S. (2014): [Development and validation of a "swine specific microarray" for simultaneous serological analysis of meat juice samples for zoonotic pathogens and animal health relevant pathogens] Dissertation, TiHo Hannover

Meemken D, Tangemann AH, Meermeier D, Gundlach S, Mischok D, Greiner M, Klein G, Blaha T. (2014): Establishment of serological herd profiles for zoonoses and production diseases in pigs by "meat juice multi-serology". Prev Vet Med. 2014 Mar 1;113(4):589-98. doi: 10.1016/j.prevetmed.2013.12.006. Epub 2013 Dec 25. PMID: 24411983.

Loreck, K.; Mitrenga, S.; Meemken, D.; Heinze, R.; Reissig, A.; Mueller, E.; Ehricht, R.; Engemann, C.; Greiner, M. (2019): **Development of a miniaturized protein microarray as a new serological IgG screening test for zoonotic agents and production diseases in pigs.** PLoS one; 14(5), S. e0217290

Loreck, K.; Mitrenga, S.; Heinze, R.; Ehricht, R.; Engemann, C.; Lueken, C.; Ploetz, M.; Greiner, M.; Meemken, D. (2020): Use of meat juice and blood serum with a miniaturised protein microarray assay to develop a multi-parameter IgG screening test with high sample throughput potential for slaughtering pigs. BMC veterinary research; 16, S. Article number: 106

Dzierzon J, Oswaldi V, Merle R, Langkabel N, Meemken D. High Predictive Power of Meat Juice Serology on the Presence of Hepatitis E Virus in Slaughter Pigs. Foodborne Pathog Dis. 2020 Nov;17(11):687-692. doi: 10.1089/fpd.2020.2797. Epub 2020 May 17. PMID: 32412857.