

PUBLISHED SCIENTIFIC OPINIONS

- Modernisation of meat inspection (2011 2013)
 - EFSA publishes six scientific opinions on public hazards linked to meat inspection.
 - Considering domestic swine, poultry, bovine, domestic sheep and goats, farmed game and domestic solipeds.
 - EFSA ranks hazards and recommends possible improvements or alternative methods for meat inspection at EU level.

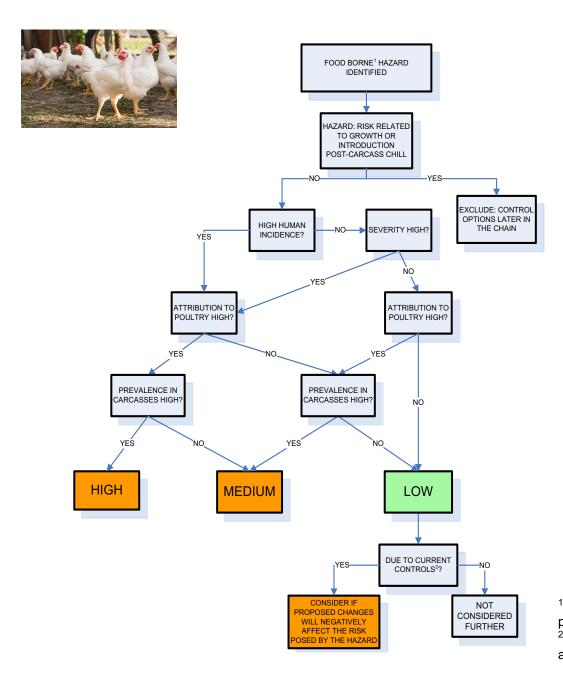
- Delayed meat inspection (2020)
 - EFSA evaluates the potential effects of delayed post-mortem inspection of **ungulates** on public health and monitoring of animal health and welfare.

Modernisation of meat inspection in the EU

TERMS OF REFERENCE

- Identify and rank main public health (PH) risks addressed by meat inspection
- Assess strengths and weaknesses of the current methodology and recommend alternative methods
- Recommend additional inspection methods in case other previously not considered hazards have been identified
- Recommend possible **alternative methods** and adaptations of inspection methods that provide an equivalent level of protection

APPROACH TAKEN BY BIOHAZ PANEL


(not showing assessments from AHAW and CONTAM Panels)

- Hazards were ranked qualitatively using a decision tree, based on:
 - incidence and severity in humans,
 - prevalence on carcasses,
 - meat from these species as a risk factor for human disease

\rightarrow Resulting in a shortlist of hazards

• Following an assessment of current methods of meat inspection, alternatives/improvements were recommended

Decision tree for risk ranking

¹Risk of infection through handling, preparation or consumption of poultry meat.

² Current controls: any hazard-specific control measures implemented at farm and/or slaughterhouse level before chilling of the carcasses.

Species	Main biological hazards
Swine	Salmonella, Toxoplasma, Trichinella and
	Yersinia
Poultry	<i>Campylobacter, Salmonella,</i> ESBL-AmpC ¹
	carrying Escherichia coli and Salmonella
Cattle	Verocytotoxin-producing E. coli (VTEC),
	Salmonella
Sheep and goats	VTEC, Toxoplasma
Solipeds	Trichinella
Farmed game (Deer)	Toxoplasma
Farmed game (Wild	Salmonella, Toxoplasma
boar)	
Farmed game (Reindeer,	None
rabbits and ostriches)	

STRENGTHS & WEAKNESSES OF CURRENT MEAT INSPECTION?

- Food chain information (FCI) provides information on disease occurrence and veterinary treatments, enabling a focused inspection of animals with problems;
- Ante-mortem inspection allows the detection of observable abnormalities and of animals heavily contaminated with faeces;
- Post-mortem inspection enables the detection of carcass faecal contamination, which is an indicator of slaughter hygiene.

- The use FCI for food safety purposes is limited because the data that it contains is very general and does not address specific hazards of public health importance;
- Current ante- or post-mortem visual inspection are not able to detect any of the public health hazards identified as the main concerns for food safety;
- Palpation and incision techniques used during *post-mortem* inspection can cause bacterial cross-contamination.

SELECTED CONCLUSIONS ON HAZARDS CURRENTLY NOT COVERED BY MEAT INSPECTION

- To ensure effective control of the hazards of relevance, a comprehensive meat safety assurance, combining measures applied on-farm and at-abattoir, is necessary.
- A prerequisite for this system is **setting targets** for these hazards to be achieved by food business operators at carcass level.
- To meet these targets, a variety of **control options** for the main hazards are available, at both farm and abattoir level.

INTEGRATED MEAT SAFETY ASSURANCE SYSTEM

1. Risk-Categorisation of batches/herds/flocks /farms for the 2. Risk-Categorisation of main hazards: based on on-farm slaughterhouses according to their indicators and FCI capacity to control the hazard: based on data from process hygiene assessments, HACCP 3. Control measures both on farm and at the slaughterhouse nnnnr

REVISION OF REGULATION (EC) NO 854/2004

EN

Official Journal of the European Union

L 69/99

COMMISSION REGULATION (EU) No 219/2014

of 7 March 2014

amending Annex I to Regulation (EC) No 854/2004 of the European Parliament and of the Council as regards the specific requirements for post-mortem inspection of domestic swine

(Text with EEA relevance)

- (5) In view of the EFSA Opinion, it is appropriate to amend the specific requirements for the post-mortem inspection of domestic swine set out in Part B of Chapter IV of Section IV of Annex I to Regulation (EC) No 854/2004.
- (6) Where the epidemiological or other data from the holding of provenance of the animals, the food chain information or the findings of ante-mortem inspection or post-mortem visual detection of relevant abnormalities indicate possible risks to public health, animal health or animal welfare, the official veterinarian should have the possibility to decide which palpations and incisions must be carried out during post-mortem inspection in order to decide if the meat is fit for human consumption.

EVALUATION OF PUBLIC AND ANIMAL HEALTH RISKS IN CASE OF A DELAYED POST-MORTEM INSPECTION IN UNGULATES

 Revised meat inspection procedures took into account the BIOHAZ Panel Opinions on public health hazards to be covered by inspection

Requests have been made for the possibility to delay post-mortem inspection (PMI)

- Carrying out PMI of animals slaughtered on the day before when ante-mortem inspection has been carried out on the animals slaughtered that day;
- Carrying out PMI on wild game in **game-handling** establishment **after the weekend** on carcasses arriving on Friday evening or Saturday.
- Obligation remains of chilling immediately after slaughter

TERMS OF REFERENCE

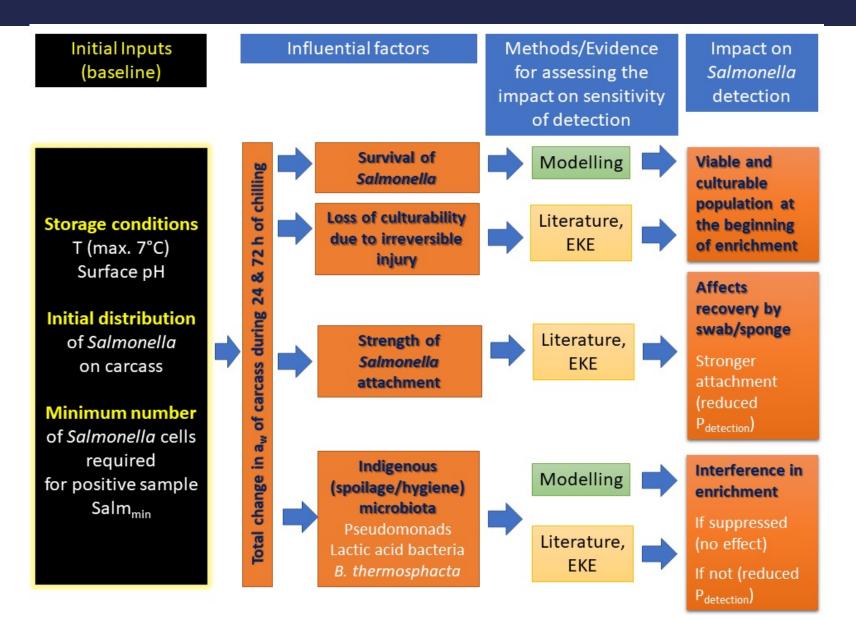
- EFSA is asked to assess the effectiveness of PMI (in terms of its sensitivity in detecting the diseases/conditions listed below) when carried in both the following delays:
- a) up to 24 hours after slaughter or arrival in the game-handling establishment, or
- b) up to 72 hours after slaughter or arrival in the game-handling establishment,
- **in comparison** to when it is carried out immediately after slaughter or arrival in the game handling establishment.

TERMS OF REFERENCE

- Animal diseases Art. 5 Reg (EU) 2016/429 in all ungulates
- Septicaemia, pyaemia, toxaemia, viraemia in all ungulates
- Cysticercosis in domestic bovine animals and Suidae
- Glanders in solipeds
- Tuberculoid lesions in all ungulates
- Brucella in all ungulates
- Trichinella in Suidae and solipeds
- TSEs in cattle, sheep, goats and cervids
- Salmonella spp. (PHC on carcasses) in all ungulates
- Chemical residues and contaminants in all ungulates

BIOHAZ

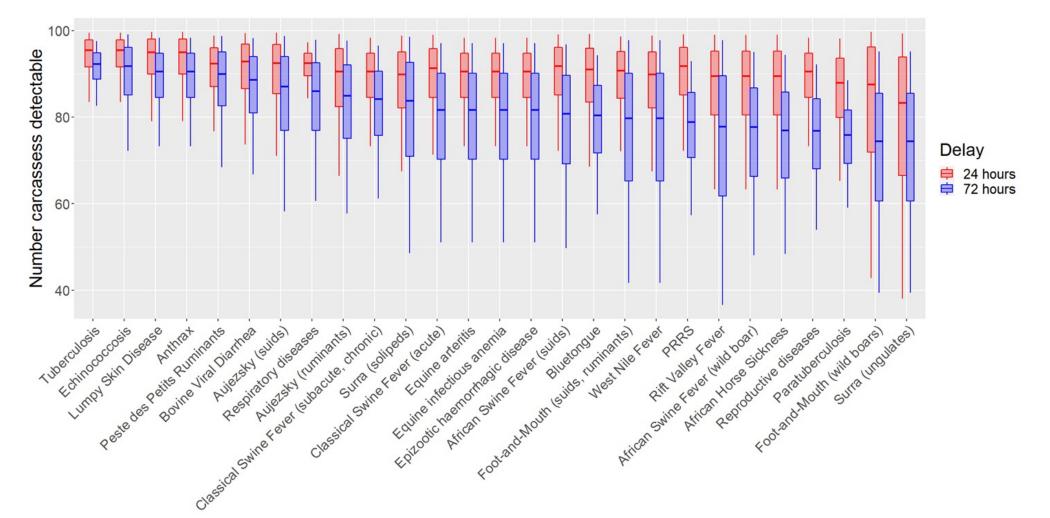
CONTAM


DATA AND METHODOLOGY

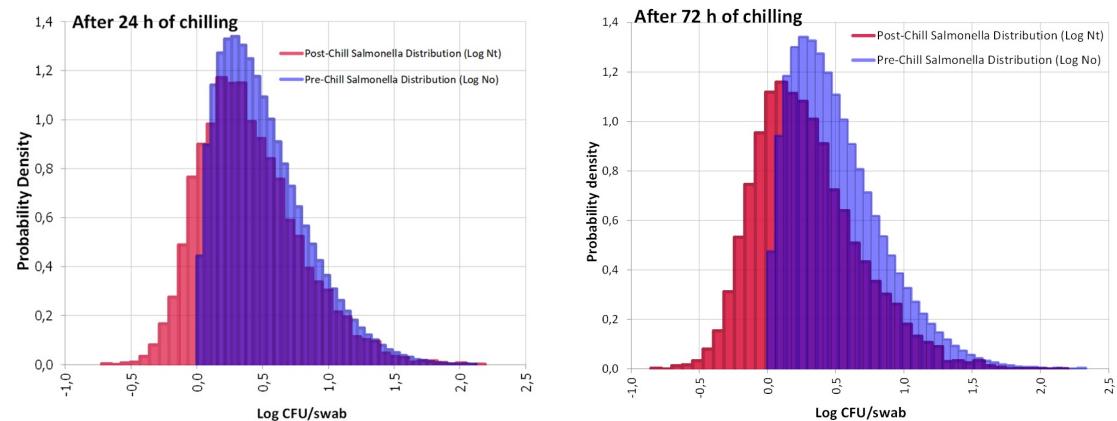
- Literature search
- Disease map: summary table with main lesions
- Lesion map: connecting animal species with organs with lesions and corresponding disease
- Questionnaire meat inspectors and reference laboratories (bTB)
- Predictive model for Salmonella
- Expert knowledge elicitation (EKE) to assess uncertainty

	В	С	D	E
1	organ	lesion	disease	Notes
2	lymph nodes	enlargement	anthrax	
3	lymph nodes	enlargement	anthrax (asymptomatic)	
4	general condition	generalised septicaemia	anthrax (clinical)	Detection on farm or AMI
5	mouth	hemorrhages	anthrax (clinical)	Detection on farm or AMI
6	head	hemorrhages (nose)	anthrax (clinical)	Detection on farm or AMI
7	spleen	enlargement with a 'blackberry	anthrax (clinical - sudden death)	Detection on farm or AMI
8	CNS	necrosis	Aujeszky	Not detectable at PMI
9	spleen	necrosis	Aujeszky	
10	liver	necrosis	Aujeszky	
11	lungs	necrosis	Aujeszky	
12	lymph nodes	swelling	Aujeszky	
13	lymph nodes	haemorrages	Aujeszky	
14	generalized	necrosis (multifocal)	Aujeszky	
15	respiratory tract (upper)	necrosis	Aujeszky	
	tonsils	inflammation (necrotic)	Aujeszky	
17	lungs	oedema	bluetongue (clinical form)	
18	lungs	haemorrhages (base of	bluetongue (clinical form)	
	thoracic cavity	hyperaemia	bluetongue (clinical form)	
	thoracic cavity	liquid (pleural effusion) fibrin	bluetongue (acute phase)	
21	head	oedema of the face, evelids and	bluetongue (clinical form)	Detection on farm or AMI
22	mucous membranes	hemorrhages and erosions	bluetongue (clinical form)	
23	mouth	tongue (hyperhaemia, oedema,	bluetongue (clinical form)	Detection on farm or AMI
24	muscles, general appearance	severe muscle degeneration	bluetongue (clinical form)	
	pericardium	hemorrhages and/or fibrin	bluetongue (acute phase)	
	pericardium	hyperaemia	bluetongue (clinical form)	
27	none	none	bluetongue (asymptomatic)	No lesions detectable at P
	none	none	bovine genital campylobacteriosi	
	muscles, general appearance	arthritis, bursitis	brucellosis	Detection on farm or AMI
	muscles, general appearance	athritis, bursitis	brucellosis	Detection on farm or AMI
	muscles, general appearance	arthritis, bursitis	brucellosis	Detection on farm or AMI
	reproductive tract	orchitis	brucellosis	
	reproductive tract	vaginal discharges	brucellosis	
	reproductive tract	orchitis	brucellosis	
	reproductive tract	vaginal discharges	brucellosis	
	none	none	brucellosis (inapparent form)	No lesions detectable at P
	lungs	pneumonia - interstitial	BVD	
	lungs	alveolar necrosis/haemorrhage	BVD	
	lungs/pleura	pleuropneumonia - fibrinous	BVD	
	nasal cavity/muzzle	erosions/ucerations/necrosis	BVD	
	oral cavity	erosions/ucerations/necrosis	BVD	

SALMONELLA MODEL

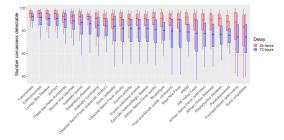

DETECTION OF CHEMICAL RESIDUES AND CONTAMINANTS

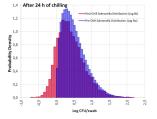
Species	High potential concern	Medium potential concern		
Farmed game	/	 Prohibited substance: chloramphenicol, nitrofurans and nitroimidazoles Contaminants: cadmium 		
Swine	 Contaminants: dioxins and DL-PCBs Prohibited substance: chloramphenicol, 	 Prohibited veterinary medicinal products: nitroimidazoles and nitrofurans Contaminants: NDL-PCBs, PBDEs, cadmium, mercury and lead, mycotoxins (OTA) 		
Cattle	Contaminants: dioxins and DL-PCBs	 Prohibited substances: stilbenes, thyrostats, gonadal (sex) steroids, resorcylic acid lactones, β-agonists, chloramphenicol and nitrofurans Contaminants: NDL-PCBs, cadmium, mercury and lead 		
Sheep and goats	Contaminants: dioxins, DL-PCBs	 Prohibited substances: stilbenes, thyrostats, gonadal (sex) steroids, resorcylic acid lactones, β-agonists, chloramphenicol and nitrofurans Contaminants: NDL-PCBs, cadmium, mercury and lead 		
Solipeds	 Prohibited substance: phenylbutazone Contaminants: cadmium 	/		


RESULTS AHL

 Consensus distribution about mean number of carcasses with a given target disease still detectable at 24-h or 72-h delayed PMI

RESULTS SALMONELLA




CUMULATIVE PROBABILITIES OF REDUCTION IN SENSITIVITY OF SALMONELLA DETECTION AFTER 24- AND 72-H OF CHILLED STORAGE

	After 24 h		After 72 h	
Percentage of reduction (%)	Cumulative probability	Probability of greater reduction	Cumulative probability	Probability of greater reduction
10	0.15	0.85	> 0.09	0.91
20	0.2	0.8	0.12	0.88
30	0.25	0.75	0.14	0.86
40	0.31	0.69	0.17	0.83
50	0.37	0.63	0.20	0.8
60	0.44	0.56	0.23	0.77
70	0.53	0.47	0.27	0.73
80	0.63	0.37	> 0.33	0.67
90	0.75	0.25	0.43	0.57

SELECTED CONCLUSIONS

- The ability to detect the diseases (AHL) is expected to decrease, the reduction in sensitivity is highly variable and depends on the type of lesions
- Delays could reduce **TSE** diagnostic sensitivity but would not exceed tolerance for fallen stock surveillance sampling.
- For the detection of *Trichinella* the panel did not find any evidence that would suggest a decrease in sensitivity
- For the detection of Salmonella, a median reduction in sensitivity is expected
 - 66.5% after 24 h and
 - 94% after 72 h

ACKNOWLEDGMENTS

- EFSA Panel on Biological Hazards and WGs
- EFSA Panel on Contaminants in the Food Chain and WGs
- EFSA Panel on Animal Health and Welfare and WGs
- EFSA staff from various Units
- Stakeholders that provided data on request
- European Commission

STAY CONNECTED

SUBSCRIBE TO

3

0

efsa.europa.eu/en/news/newsletters efsa.europa.eu/en/rss Careers.efsa.europa.eu – job alerts

LISTEN TO OUR PODCAST Science on the Menu –Spotify, Apple Podcast and YouTube

FOLLOW US ON TWITTER @efsa_eu (@plants_efsa (

@methods_efsa @animals_efsa FOLLOW US ON LINKEDIN Linkedin.com/company/efsa

I,

in

 \bowtie

FOLLOW US ON INSTAGRAM @one_healthenv_eu CONTACT US efsa.europa.eu/en/contact/askefsa

